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Letter from the Series Editor

You may have noticed that the Thomson Course Technology PTR Game Develop-
ment series has not published a book on shaders until this one. This is no mistake.
We were waiting for a number of things to occur: first and foremost, for the tech-
nology to mature. If you recall the initial release of DirectX, you know that the soft-
ware was revised almost on a quarterly basis, and worse yet, everything you learned
was nearly useless until DirectX 5.0 stabilized a number of the systems. Shader pro-
gramming is a similar animal; it’s been changing very quickly; however, both
NVIDIA and ATI seem to have the hardware down, and Microsoft has stepped up to
take a leadership role in the development of HLSL (High Level Shader Language) to
make programming shaders as effortless as possible.

The second, and probably most important, reason we have held off on a book in this
area is that, as the series editor, I wanted to have a book that was the quintessential
guide to beginning to intermediate shader programming. Finding the right author
to do that has taken a long time, but the wait was well worth it. Sebastien St-Laurent
is expert at shader programming, but even more important is his ability to make the
topic interesting and engaging.

Moreover, the information you read in this book will not be out of date in six
months; this is core material, and 90 percent of it will be applicable three to five years
from now, so you are going to get an incredible return on your time investment.
There are a lot of shader books on the market. I have read all of them. When
Sebastien and I developed the outline and table of contents for this book, we both
wanted to make sure to cover the important material that others had covered while
filling the holes and gaps that other books have repeatedly left out.

In the final analysis, this is one of my favorite Thomson Course Technology PTR
Game Development books. Not only does the book move at a fast (although not a
blinding) pace, the writing style is fun, and the author continually gives examples
and suggestions of how to use the technology. In addition, because the book relies
heavily on ATI’s RenderMonkey shader tool, non-programmers and artists can learn
a lot as well.

On a technical note, the progress of graphics technology over the last 25 years is
rather cyclic. If you recall, the first 3D games were software-based with software ras-
terizers: DOOM, QUAKE, and related games. Then, as 3D fixed pipeline hardware
matured, games started taking advantage and became hardware-based, and the
pipeline moved to the hardware with the result that a huge loss of control ensued.
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Now, however, we can run software on a per pixel basis, and that’s a mind-blowing
concept. So shaders bring us full circle; we have the speed of hardware with the flex-
ibility of software. I suppose the next step will be for the hardware to be completely
reconfigurable via reprogrammable logic cores embedded in the GPUs . . . we 
will see.

In conclusion, if you had to pick a single book on pixel and vertex shader program-
ming, this is the complete solution. You will learn everything from the tools, the
technology, and actual implementation details. And of course this is all fresh mater-
ial, not regurgitated, updated material from articles or other books. Hence, without
hesitation, I recommend this book if you are interested at all in shader 
technology.

Sincerely,

André LaMothe
Thomson Course Technology PTR Game Development Series Editor
2004
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During the summer of 2003, I was approached by André LaMothe to write a book
on the topic of shaders. My experience on the PC and Xbox and writing game
engines and shader architectures made me a great candidate for such an

endeavor. Having always wanted to write a technical book, I simply could not resist and
jumped into this great adventure.

My first task was to determine the approach I would take in writing this book. At that
time, there were already several books available on the topic of shaders, and I felt the need
to innovate and explore this topic in a form not done before. One of my gripes with many
of the books already in print was that they all spent so much time explaining how to use
rendering APIs, such as DirectX, and little time making shaders. This is where the idea of
using ATI’s RenderMonkey came into being. This new tool offered a rich set of features,
allowing the quick, easy, and intuitive development of shaders.

I set off to do a brain dump of all my shader knowledge, taking advantage of
RenderMonkey to make the learning process even easier. Throughout this book, you 
can expect to spend most of your time learning about shaders and how to create them. I
do not just focus on the basics; several useful techniques, from basic to advanced, are pre-
sented in a straightforward manner aimed at allowing you to quickly absorb and apply the
knowledge you gain from this book.

Who Should Read This Book
The topic of Shaders for Game Programmers and Artists is shader development; therefore,
the book is written for anybody who has some interest in the topic. Because the topics and
techniques covered throughout this book are so varied, it is bound to be of interest to
everybody from hobbyist programmers to professional shader developers. xxi
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The approach I take in this book, using RenderMonkey, allows the content to be distanced
from rendering APIs, such as DirectX or OpenGL. This allows you, the reader, to focus
essentially on shader development and not on the development of framework applica-
tions. My approach to this book has the added advantage of making shader development
available not only to engineers but also to technically minded artists.

Finally, with the approach taken throughout this book and the extensive exercises at the
end of each chapter, Shaders for Game Programmers and Artists can also be a valuable asset
in the classroom where real-time graphics have taken an even more important place in the
computer science curriculum.

What Will Be Covered (And What Won’t)
The topic of Shaders for Game Programmers and Artists is shaders, and it is all I will focus
on. I will explain a variety of techniques that cover a wide range of topics, from image fil-
tering to advanced lighting techniques. The following list summarizes some of the topics
covered in this book:

■ Introduction to several basic shader-related topics, including shaders, their history,
and extensive documentation on how to use RenderMonkey and develop shaders
using the HLSL shader language.

■ An extensive set of screen-based techniques that can be used to enhance existing
scenes. This book covers simple techniques, including everything from basic color
filters to more advanced topics such as depth of field, heat shimmer, and high-
dynamic range rendering.

■ Lighting techniques ranging from simple per-vertex and per-pixel lighting
approaches to more advanced topics such as bumpmapping, spherical harmonics,
and polynomial texture maps.

■ The rendering of varying materials is also covered through several techniques
ranging from bi-directional refractance functions to procedural materials.

With this in mind, all shaders are developed making use of the RenderMonkey platform.
This tool, developed by ATI Technologies, provides an easy-to-use framework for shader
development. This approach allows you to focus solely on shaders and not on any specific
APIs or the writing of framework code.

The preceding paragraph implies what we will not cover in this book. Because I want to
focus solely on shader development, I will not go into any detail regarding general C/C++
programming; nor will I go into detail about how any of the rendering APIs work.

In simple words, this book covers shaders, using both RenderMonkey and the HLSL
shader language.

Introductionxxii
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Exercises
To facilitate the learning process throughout your reading of this book, I have included
several exercises at the end of each chapter in a section called “It’s Your Turn.” These exer-
cises invite you to expand upon the shaders developed throughout the chapters and
increase your understanding of shaders. Extensive solutions to each exercise are to be
found in Appendix D, “Exercise Solutions.”

Support
Finally, a Web site is maintained at http://www.courseptr.com that provides support for
this book. This site will be updated regularly to post errata and updates to the example
programs as needed. Be sure to check it if you have any problems.

And if you have any questions or comments about this book, feel free to contact me,
Sebastien St-Laurent, at sebastien_st_laurent@hotmail.com.

Introduction xxiii
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Welcome to Shaders for Game Programmers and Artists. The title of the

book is very much self-explanatory; we will explore shader develop-

ment together throughout this book. You will learn how vertex and

pixel shaders work and how information flows from the initial piece of geometry

to the final pixels displayed on the screen. Throughout the book, I will show you

how to harness the latest hardware innovations and take advantage of the newest

shader technologies to create photorealistic and stunning 3D graphics.

The goal of this book is not only to teach you some impressive effects and tech-

niques, but also to give you the skills you need to explore your own creativity and

create new shaders and techniques from scratch.

The first part of the book focuses mostly on introducing the technologies and

tools we will use throughout the rest of the book. You can think of this as your

warm-up before you get your hands dirty!
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Welcome to the 
World of Shaders

chapter 1

Computer graphics and its associated hardware have made significant technologi-
cal leaps since the introduction of the first consumer-level 3D hardware acceler-
ated graphics card, the 3Dfx Voodoo, in 1995. This card had limited rendering

capabilities, but it allowed developers to break new ground and move away from software-
only solutions. This finally made real-time 3D graphics and games a true reality.

Since then, the following generations of hardware improved significantly in their perfor-
mance and features. However, all of them were still bound by a limited fixed-pipeline
architecture that restricted developers to a constrained set of states that are combined to
produce the final output.

The limited functionality of the fixed-pipeline architecture restricted developers in what
they could create. This generally resulted in synthetic-looking graphics. At the other end
of the spectrum, high-end software rendering architectures used for movie CG had some-
thing that allowed them to go much further. RenderMan is a shading language developed
by Pixar Animation Studios. It enables artists and graphic programmers to fully control
the rendering result by using a simple, yet powerful programming language. RenderMan
allowed the creation of high-quality, photo realistic graphics used in many of today’s
movies, including Toy Story and A Bug’s Life. One thing to note about RenderMan is that
it is very complex and was never intended for real-time rendering, but as a means to give
full control to movie CG artists.

With the evolution of processor chip making and the accompanying increase in processing
power came the natural extension of the RenderMan idea to consumer-level graphics hard-
ware. Along with the release of DirectX 8.0 came the introduction of vertex and pixel shader
version 1.0 and 1.1. Although the standard came with limited flexibility and omitted some
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features such as flow control, it was the first step in giving developers and artists the flexi-
bility they needed to produce the stunning and realistic graphics they had always dreamed
of. We were finally at the point where consumer video cards could produce graphics that
could compete with the renderings produced by Hollywood’s movie studios.

During the next few years, graphics hardware and 3D APIs made giant leaps forward in
functionality and performance, even shattering Moore’s law with respect to technological
advancement rate. With the introduction of the DirectX 9.0 SDK and the latest genera-
tions of graphics hardware, such as the GeForce FX series from NVIDIA and Radeon 9800
series from ATI Technologies, came vertex and pixel shader version 2.0 and 2.x.

n o t e

The term Moore’s Law came from an observation made in 1965 by Gordon Moore, co-founder of
Intel, that the number of transistors per square inch had doubled every year since the introduction
of the integrated circuit. He also predicted that this trend would continue for at least a few decades,
which has so far turned out to be true. Also, since the transistor density relates to the performance
of integrated circuits, Moore’s Law is often cited as a prediction of future hardware performance
increase.

This new shader model brings new flexibility never before available to real-time graphic
application developers. Some of the new features include support for flow control opera-
tions such as branching and looping, many more constant and temporary registers to play
with, up to 16 dependent texture lookups, and much more. With all those new features,
developers and artists now have the same freedom to create stunning effects and materi-
als, finally bringing movie-grade CG to consumer-level hardware in a real-time fashion.

Although this technological innovation meant developers could now push more geome-
try through the rendering pipeline, we have hit the point where the increase in geometry
does not add significant graphic detail to a scene. On the other hand, proper use of multi-
pass texturing with the use of shaders allows a never-before-seen realism. Keeping this in
mind, shader development is sure to be the next best thing when it comes to computer
graphics.

This book takes advantage of the latest technologies and tools available to introduce you,
the reader, to shader development and design. Although this book is written for interme-
diate to advanced users, anyone with a basic understanding of 3D can benefit from explor-
ing the shaders and effects presented here.

To simplify the learning task, I’ll take an innovative approach throughout the book.
Instead of focusing on a specific 3D API, as most books do, I will use a tool called 
RenderMonkey, developed by ATI Technologies. RenderMonkey allows shader develop-
ment through a simple graphical user interface. It abstracts shader creation from any spe-
cific API and allows for easy development and prototyping. And no additional coding
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beyond the shader program itself is needed. This has the added advantage of making this
book a great learning tool for both students and technically minded artists! You can now
learn shaders without having to acquire the more general programming and 3D API skills
that most currently available books require.

In the following sections, I discuss the basic requirements needed to develop shaders
through RenderMonkey. I also do a quick outline of the vertex and pixel shader architec-
tures, and a flythrough of tools that you will find useful as you use this book.

Prerequisites
As I just mentioned, you are expected to have a minimal understanding of 3D graphics
and especially the mathematics behind them. Although I cover some of the basic topics in
the next chapter as reference, I don’t go in-depth on those subjects. You are expected to
know the basics, which include basic matrix and vector operations, such as dot products
and cross products in the R3 and R4 space. If you feel your linear algebra skills are a little
behind, it might be a good idea at this point to grab a more general 3D book or a linear
algebra textbook to brush up on your skills.

Because this book does not dwell on the fine details of specific rendering API and does not
target any specific programming language (with the exception of the High-Level Shader
Language), few programming skills are needed. This philosophy allows the book to pre-
sent shaders in a neutral environment that enables both programmers and technically
minded artists to take advantage of the new shader craze!

Beyond the intellectual requirements, here is a basic list of software and hardware you’ll
need to use the contents of this book:

■ DirectX 9.0 SDK (included on the CD).

■ RenderMonkey by ATI Technologies (included on the CD).

■ Windows 2000 (with service pack 2) or Windows XP (Home or Professional) 
operating system.

■ Pentium 3 class or better processor.

■ At least 256MB of RAM.

■ 500MB of hard disk space.

■ A high-end 3D graphics card. I recommend either a Radon 9800 or GeForce FX
class card. Since I use vertex and pixel shaders extensively throughout the book,
hardware with support for these shader models is strongly recommended. You may
still use lesser hardware, but you will need to use software emulation, which will
significantly lessen performance.

■ And of course, the latest drivers for your video card.

Prerequisites 5
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With those prerequisites in mind, you will be able to start exploring and developing the
shaders from this book by using RenderMonkey. You will also be able to start exploring
your own creativity and creating your own shaders from scratch with the skills you will
gain throughout the book. Appendix C contains all the instructions you need to install the
software included with this book and get you on the right track to shader mastery.

In the following section, I review the improvements and architectures of vertex and pixel
shader version 2.0 over 1.0/1.1. In Chapter 2, I elaborate on a more complete survey of 3D
rendering and hardware architectures.

Vertex and Pixel Shader Pipelines and Capabilities
Vertex and pixel shader model 2.0 brings many significant new improvements to the lan-
guage since the introduction of version 1.0 and 1.1 with DirectX 8.0. Because of the recent
release of DirectX 9.0, and the release of vertex and pixel shader 2.0-compliant video
cards, this book focuses mostly on developing shaders based on this technology.

n o t e

Although the use of a vertex and pixel shader 2.0-compatible video card is strongly recommended,
you can still take advantage of the shaders developed throughout this book with the reference ras-
terizer. The reference rasterizer will emulate the needed vertex and pixel shader functionality by
using a software renderer. However, remember that any emulation is always significantly slower
than the real thing!

I assume you already have a basic knowledge of 3D, so let’s start by going over the signif-
icant changes introduced by the second generation of shader languages over their legacy
counterparts.

Vertex shader 2.0 and 2.1 include the following improvements:

■ Support for integer and Boolean data types and proper setup instructions.

■ Increased number of temporary and constant registers.

■ The maximum instruction count allowable for a program has increased. Develop-
ers have more flexibility (the minimum required by the standard has gone from
128 to 256, but each hardware implementation can support more).

■ Many new macro instructions, allowing complex operations such as Sine/Cosine,
Absolute, and Power.

■ Support for flow control instruction such as loops and conditionals.

The following list outlines pixel shader 2.0 and 2.x improvements:

■ Support for extended 32-bit precision floating-point calculations.

■ Support for arbitrary swizzling and masking of register components.

Chapter 1   ■ Welcome to the World of Shaders6

TEAM LinG - Live, Informative, Non-cost and Genuine !



■ Increase in the number of available constant and temporary registers.

■ Significant increase in the minimum instruction card allowed by the standard,
from 8 to 64 arithmetic and 32 texture instructions. Pixel shader 2.x allows even
more instructions by default and allows the hardware to go beyond the standard’s
minimum requirements.

■ Support for integer and Boolean constants, loop counters, and predicate registers.

■ Support for dynamic flow control, including looping and branching.

■ Gradient instructions allowing a shader to discover the derivate of any input 
register.

With this rich set of improvements, developers are free to set their creativity loose and cre-
ate stunning effects. At this point, it is probably good to do an overview of their architec-
ture to give you a better understanding of how the information flows throughout the
graphics hardware.

n o t e

Because we will focus mostly on the use of Microsoft’s HLSL, we will not elaborate on the instruc-
tions and syntax about writing shaders directly in assembly. When using assembly, you write your
shaders in simple instructions, which the graphics processor executes directly. However, this makes
programming more difficult because you have to manage variables and registers, and some simple
concepts can translate into several instructions. On the other hand, HLSL is a high-level language
that enables you to write shaders in a more logical way without dealing with all the micro-man-
agement hassles of hand-writing assembly shaders.

For more information on this, you should consult the documentation provided with the DirectX 9.0
SDK, included on the CD with this book.

It is functionally too expensive to represent a 3D environment in terms of true volumet-
ric representation. Such a representation would be too expensive in memory use and pro-
cessing requirements, as I will discuss later. Most objects are solid and opaque, causing you
to only see their external shapes. If you see an egg, you see its outside, but by simply look-
ing at it, you cannot tell if there is anything inside. Because of this, 3D graphics are sim-
plified by using this idea and representing an object out of its outer shell rather than
trying to represent it as a whole. Think of it as building a papier-mâché structure where
you must first erect a wire mesh to define the shape you want to build.

In 3D graphics, this wire mesh is represented by a set of polygons, which connect to form
an outer shell. Each extremity of each polygon is called a vertex. Vertices are the core of
3D graphics because they transport all the structural information needed to represent the
geometry, such as the position, color, and texturing information.
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n o t e

I have to add a quick mention about my use of the term polygon. Although the definition of poly-
gon implies a shape that can be constructed of any number of sides, it is common practice in 3D
rendering to use a polygon in its simplest form, which is a triangle. So throughout this book, I will
use both terms with the same meaning.

When rendering 3D graphics, this information passes to the graphics hardware through
the use of a rendering API such as Direct3D or OpenGL. Once this information is received
by the hardware, it invokes the vertex shader for every vertex in your mesh. Figure 1.1
includes the functional diagram for a vertex shader 2.0 implementation, as dictated by the
specifications.

As you can see from Figure 1.1, vertices come in from a stream that is supplied by the
developer through a 3D rendering API, such as Direct3D or OpenGL. The stream contains
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all the information needed to properly process the geometry for rendering, such as posi-
tions, colors, and texture coordinates. As the information comes in, it is put into the
proper input registers, v0 to v15, for use by the vertex shader program. This means that
each vertex is processed individually and can be defined by up to 16 pieces of information
through the input registers. The vertex shader program then has access to many other reg-
isters to complete its task, which consists of taking the input information and processing
and transforming it into a form to be used by the pixel shader to perform the final shad-
ing and rendering.

Constant registers are read-only registers that must be set ahead of time and are used to
carry static information to the shader. Under the vertex shader 2.0 standard, constant reg-
isters are vectors and can be floating-point numbers, integer values, or Boolean values.
Take note that registers within the vertex shader are stored as a four-component vector,
where you can process each component in parallel or individually by using swizzling and
masking.

On the left side of Figure 1.1 are the temporary registers, which are used to store inter-
mediate results generated by the vertex shader. Obviously, because of their temporary
nature, you can both write and read from these registers. Take note of the registers named
a0 and aL. These are counter registers for indexed addressing and for keeping track of
loops. They are special cases, and all other registers can be used for any purpose you wish
within your shader. Also keep in mind that because HLSL is a high-level shading language,
you do not need to take care of register allocation. It will happen transparently as the
shader is compiled to its final form.

With access to the vertex data registers (also known as input registers), temporary regis-
ters, and constant registers, the vertex shader program is now free to process the incom-
ing vertices and manipulate them in whichever way the developer sees fit. Once the
processing is complete, it must pass the results to the final output registers. The most
important one is oPos, which must contain the final screen space projected position for
the vertex. The other registers carry information such as colors and the final texture
coordinates.

Once the vertex shader has done its job, the information is then passed along to the ras-
terizer. This part of the hardware takes care of deciding the screen pixel coverage of each
polygon. It also takes care of other rendering tasks, such as vertex information interpola-
tion and occlusion.

Interpolation is the process by which the information defined at the vertices for a polygon
is transitioned so that each pixel has a proper value. Imagine a line with one vertex at each
end. If one is black and the other is white, at some point in the middle of the line you need
a color that is somewhere between, like gray. Interpolation performs the same process on
the whole scale of the triangle. The occlusion process, on the other hand, takes care of
which portions of the polygon are onscreen. Determining this enables us to not waste
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valuable processing time shading portions of a polygon that you can’t see in the first place.
This helps reduce the overall work that must be done by the hardware. After the rasterizer
determines the pixel coverage, the pixel shader is invoked for each screen pixel drawn. Fig-
ure 1.2 includes the functional diagram for the pixel shader architecture.

As you can see from the diagram in Figure 1.2, the hardware sends the pixels it calculates
through the input color and texture registers. Those values are based on the perspective
interpolation of the values defined through the vertex shader. Registers v0 and v1 are
meant to be the interpolated diffuse and specular lighting components. The registers t0 to
tN carry interpolated texture lookup coordinates. You may notice in Figure 1.2 that the
arrows for the texture registers go both ways. This is due to a design decision, which also
allows you to write to the texture registers and use them as a temporary register by writ-
ing to them. Finally, s0 to sN point to the textures that the pixel shader will sample dur-
ing the actual processing of the pixel. Although those registers have clear semantics, they
can be used to carry any information from the vertex shader onto the pixel shader.
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The constant registers, c0 to cN, can only be read and are set up ahead of time by the
developer with values useful to the shader. Finally, the temporary registers, r0 to rN, are
read/write and keep track of intermediate results during the processing of the pixel. When
using HLSL, all register usage and allocation is done automatically and is transparent to
the user.

Finally, the output registers, such as oC0 and oDepth, are used by the hardware to render
the final pixel. They define its final color, fogging, and depth, and in the end, it is your job
to have your pixel shader determine these values. Once the pixel has gone through the
pixel shader, the output information is then used to blend the final result onto your frame
buffer, which is then presented on your computer screen.

n o t e

Temporary registers within vertex shaders are meant to keep temporary values for the processing
of a single vertex. By design, values within the temporary registers are not guaranteed to remain
from one vertex to another, and you should not assume they are.

Most registers in pixel shaders, with the exception of some addressing registers, are vec-
tors comprised of four floating-point values. The advantage of the vectorial architecture
is that it allows processing of multiple values at the same time. By default, all floating-
point values are processed as 32-bit precision floating-point numbers. The pixel shader
specification allows processing of 16-bit precision values, which can be enabled by special
instructions. On certain hardware implementations, the use of 16-bit floating-point
arithmetic can be significantly faster.

The last thing to note is that as with the vertex shader vector values, pixel shader vector
components can also be swizzled and masked to enable us to manipulate and extract indi-
vidual components. The swizzling operation allows you to take any combination, in any
order, of the components of a vector. For more information on swizzling and masking,
refer to the HLSL reference found in Appendix A.

Keep in mind that this is a simplified survey of the rendering architecture, and much more
does happen behind the scenes. Also remember that this architecture may vary slightly
from one hardware implementation to another. However, the standard does guarantee
that for two different implementations with the same capabilities, the final output must
be the same.

n o t e

Although DirectX 9 also introduces vertex and pixel shaders version 3.0, we will not focus on tak-
ing advantage of their features. They were introduced as support for possible future hardware and
cannot by used for any real-time applications at the time of this writing.
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Tool Overview
You will soon realize that learning shaders isn’t simply done on paper; tools are required
to get the job done. In this section I present the tools you will most likely need to use
throughout the book, either to complete the exercises or simply to explore your creativity.

RenderMonkey
This great tool was developed by ATI Technologies as a great user-interface-driven way to
create shaders by taking advantage of DirectX 9.0’s features. This tool gives the user a great
way to assemble shaders by assembling basic building blocks without having an extensive
knowledge of programming or 3D APIs. Figure 1.3 shows a sample of RenderMonkey in
action with a sample shader.

Because of its power and flexibility, I use RenderMonkey as our primary shader develop-
ment tool throughout the book. For this reason, I have dedicated Chapter 3, “Render-
Monkey Version 1.5,” to introduce this wonderful tool to you.
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Microsoft Texture Tool
Microsoft has developed a simple, yet powerful, tool as part of their DirectX SDK. This
tool, as shown in Figure 1.4, can do many basic texture manipulation tasks. Some of its
functionality includes:

■ Support for extended 32-bit precision floating-point calculations.

■ Changing the format of textures.

■ Creating cubemap and volume textures.

■ Exporting textures to the Microsoft .DDS file format.

n o t e

To have access to the Microsoft Texture Tool, you will need to install the DirectX 9.0 SDK, included
on the CD with this book.

Because .DDS files are the primary format used by RenderMonkey, this tool comes in
handy from time to time, especially to convert textures if you use an image editor that
does not support .DDS files. Also, since most image editing tools do not support special
textures such as cubemaps and volume textures, this tool is most useful when you need to
compose such textures.
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n o t e

Microsoft developed the file format for .DDS files. DDS stands for Direct Draw Surface. The intent
behind this format was to have a file format that more closely matched the texture requirements
of 3D hardware and exposed some of the more advanced features, such as cubemaps and texture
compression.

NVIDIA Photoshop Plug-In
Photoshop is a commercial image, editing program developed by Adobe Software, for
which NVIDIA has developed a plug-in allowing you to manipulate .DDS image files
directly. Although Photoshop itself may seem a little pricey, if you are serious about image
editing, it is a must! NVIDIA’s plug-in allows you to do many things with .DDS files,
including:

■ Import/Export of .DDS files.

■ Automatic mipmap generation.

■ You can export your .DDS files in any standard DirectX format, including com-
pressed textures such as DXTC.

■ Export and import of cubemap textures with a particular image layout.

■ Support for image reformatting on export. This includes resizing, filtering, and
image color format changes.

■ Normal map generation based on a height map, which is useful for bump mapping.

Figure 1.5 shows you the dialog box that shows up when you invoke the NVIDIA plug-in.
Take note of all the options and features the tool offers. The NVIDIA Photoshop plug-in
is included on the companion CD. You can also download a trial version of Adobe’s Pho-
toshop by going to Adobe’s Web site at www.adobe.com.

3D Studio Max
Besides editing textures, you need to be able to edit geometry. As of this writing,
RenderMonkey supports .3DS and .X files, which are export formats supported by 3D
Studio Max by Discreet. 3D Studio Max is a commercial (and fairly expensive) 3D editing
package that is used by many video game developers because of its ease and flexibility.
Figure 1.6 shows 3DSMax in action with a sample scene loaded.

Because of an increasing demand by the gaming community to have 3D editors available
to them so they can modify games, Discreet has developed Gmax, a free feature-reduced
version of 3DS Max. Although GMax has a more limited set of functionalities than its 
big brother, it is a good starting point and will enable you to do most of the tasks needed
to build your own geometry. You can download GMax from Discreet’s Web site at
www.discreet.com.
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Figure 1.5  Screenshot of NVIDIA’s Photoshop 
plug-in in action.

Figure 1.6  Screenshot of 3D Studio Max in action.
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For the purpose of this book, you will not need to create geometry on your own; you will
use some pre-supplied sample geometry. On the other hand, if you are serious about cre-
ating your own shaders and geometry, you should consider getting 3DSMax and learning
how to use it.

n o t e

.X files are a 3D model format developed by Microsoft. A 3DSMax-compatible export plug-in is
included with the DirectX SDK on the CD accompanying this book.

Microsoft Effect Editor
As part of the DirectX 9.0 SDK, Microsoft has developed a tool called Effect Edit, which
is similar to RenderMonkey in the sense that it provides a simple framework to edit
shaders. This tool is based around Microsoft’s .FX format, which is an extension of the
High-Level Shader Language allowing the developer to specify multiple techniques and
render states to use when rendering. As you can see in Figure 1.7, the Effect Edit tool is
simple when compared with RenderMonkey, which may be better suited for more
advanced DirectX developers. Because of RenderMonkey’s simplicity, it has been chosen
as the primary tool for this book. Although we will not use the Microsoft effect editor, I
like to mention such tools so you are aware of what is out there.
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NVIDIA’s Cg Toolkit
Because Microsoft’s HLSL is aimed at the DirectX SDK, it is limited to the Windows plat-
form; it does not provide a cross-platform solution to high-level shader development.
NVIDIA has responded to this lack of cross-platform support by developing, with the
support of Microsoft, the Cg shader language. In essence, Cg is compatible with HLSL,
and shader programs can easily be ported from one form to another. The real advantage
of Cg is its rendering API independence, which allows it to operate either under DirectX
or OpenGL.

With the introduction of the Cg shader language came the release of the Cg Toolkit. This
toolkit includes the Cg compiler and runtime components, documentation, and many
shader samples for developers to experiment with. Also included in the toolkit is the Cg
browser, which serves as a simplified shader development framework. However, we will
not use this toolkit in this book because it is aimed more towards software developers than
simple shader development.

If you wish to try out the Cg Toolkit, you can download it from NVIDIA’s developer Web
site at www.NVIDIA.com.

It’s Your Turn!
Throughout this book, you will find “It’s your turn!” sections at the end of most chapters.
These sections will invite you to do extra exercises based on the topics covered in a chap-
ter. This will encourage you to apply what you have learned and explore your own creativ-
ity. You can find the proposed solutions to the exercises in Appendix D.

For this chapter, we simply suggest that you install the content from the CD and play
around with the samples and tools included with the book. This way you can get used to
the layout and have all the data and tools handy while you read the following chapters.

What’s Next?
At this point, I hope you are excited and ready to start writing shaders. I have gone over
the basic requirements, tools, and technologies involved in shader development. This
knowledge will come in handy later when you start writing actual shaders and in the
future when you take on shaders on your own. Now that you know some of the tools you
need, it is time to get the ball rolling and teach you some of the skills you need to write
shaders.

What’s Next? 17
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In the following chapter, we explore the basics of 3D graphics, how it works, and the archi-
tectures used. As I said before, this book is aimed at intermediate to advanced 3D devel-
opers, so you’re probably already familiar with the next chapter’s content, but it is still
worthwhile to take a bird’s-eye view of the basic concepts needed to render 3D graphics.
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The Art of 3D

chapter 2

Although I assume that you have a basic understanding of 3D rendering and its
implications, it is still good to go over the basics once again as a reference, and
that’s what I’ll be doing in this chapter. People take such things for granted and

forget all the reasoning that led to today’s modern 3D graphics hardware architecture and
software APIs.

Here you will find a discussion of the fundamental principles behind today’s 3D graphics
and the math behind those principles. You will also learn about the current standard APIs
used in the industry, and the common hardware architectures used to implement such
graphics. Finally, I’ll provide a history of shaders and how they integrate into today’s ren-
dering pipeline.

This chapter may seem boring to some and too technical to others. However, today’s rich
and photorealistic real-time graphics come from years of research and development. To
be proficient and take advantage of the latest technologies, you should first understand
where they came from.

From the Ground Up
You want to draw something realistic onscreen, and your challenge is to represent a 3D
world on a flat 2D screen. In the next few sections, you will learn about the basic approach
that most rendering architectures take in order to render their geometry onscreen. I will
start with the basic elements and expand into a more real-life view of what happens under
the hood with today’s rendering architectures.
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Looking at Our Universe
The first thing to consider before rendering is what our universe is made of. The universe
we want to draw is composed of objects that are made of molecules. If we were to draw
objects by taking into consideration all the little particles that comprise them, our ren-
dering would look awesome, but we would run into some serious problems. A simple lit-
tle object contains millions of atoms, which would need tremendous amounts of memory
and processing power to display.

Such rendering is approximated in fields such as medical imaging and is called volumet-
ric rendering. However, even if you were to estimate a 3D object by a 256 × 256 × 256 grid
of particles, you would get a coarse approximation and still need about 64MB worth of
memory just to represent this simple object (and this doesn’t even include the processing
power required to render your object). Obviously, this approach may work for some spe-
cialized fields, but it is still out of reach for general-purpose rendering.

Because volumetric rendering is still too prohibitive, we need a better approximation. If we
take into consideration that most of the objects we render are solids and are opaque, we can
take a much better-suited approach. What if we represented objects by their solid outer shells?

Essentially, this approach is similar to making a papier-mâché figure. First, using a metal
mesh, you define the shape you wish to create. After you have the shape you want, you
cover the mesh with papier mâché and let it dry. To complete your shape, you apply some
colorful paint and . . . voilà!

Although this analogy sounds childish, this is essentially the approach taken in most cur-
rent 3D rendering architectures. As shown in Figure 2.1, the metal mesh is equivalent to
the vertices and edges that define the shape of your object and set the groundwork on
which your object will be built.

Although this mesh defines a shape, we still need to make it solid. This is where the papier-
mâché comes in. As shown with the teapot in Figure 2.2, intersection points on the mesh
are connected with triangular polygons. These polygons will be filled by the rendering
hardware, thus giving your object a solid outer shell.

It may interest you to know why polygons are generally defined as triangles in common
rendering architectures. First of all, triangles are the simplest shape that can be defined
with an actual surface area, and thus it serves as a fundamental building block for the cre-
ation of meshes. Although you could use more complex polygons, and some unusual
architectures do, you are bound to encounter two problems. The first significant issue
comes from the fact that by using a more complex shape as your fundamental primitive,
such as a square, you may not be able to define more complex shapes as accurately. In
addition, the mathematics for rasterizing more complex polygons, which means deter-
mining the pixel coverage of a polygon, becomes much more complex because you would
have to deal with non-convex polygons.
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Although you don’t need to let your polygons dry, they still need some color, and this is
where textures come in. Simply apply a texture (or many), lighting, and other coloring,
and you have a realistic-looking solid object like the one shown in Figure 2.3.
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Figure 2.1  Representation of a teapot as a wireframe mesh.

Figure 2.2  Representation of a teapot with polygons
interconnecting the mesh segments.
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Of course, how realistic your object looks mostly depends on how fine-grained your mesh
is and how much texturing you apply. This is a compromise that needs to be made to 
balance your renderings based on the application, the realism wanted, and the target 
performance.

Here we have examined the case of a single object. But the universe is composed of many
objects. What if you want more than one teapot, or what if you want a teapot and a rub-
ber duck? All of the objects in your universe are positioned, and the next thing we need to
discuss is how this happens.

The positioning of an object in the world is representable by three components: position,
rotation, and scale. Although there are different ways in which positioning components
can be represented, the most commonly used form is a matrix representation.

The object’s vertices define the relative position from the object’s center, which is also
referred to object space. By assigning a transformation matrix to each object in the world,
you can represent a specific object in the world by transforming its vertices from 
the object space onto the world space, which is the coordinate system representing the
universe.

In the following sections, you will learn how each of the three components can be repre-
sented by the use of matrices.
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Figure 2.3  A snapshot of the teapot with texturing.
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Translation Matrix
Positioning an object in space requires that the object be given a 3D spatial coordinate.
The coordinate itself is about the origin of the world, which is defined arbitrarily.
Figure 2.4 demonstrates translation and its matrix representation.

n o t e

When talking about a 3D world, the term “origin” is used to define the center of the world. In sim-
ple terms, it represents the point in space that has a zero coordinate and from which all positions
are defined.

Scale Matrix
Sometimes objects need to be scaled because they need to be represented in the world in
a different size than that in which they were originally created. Scales can be applied arbi-
trarily in any of the three axes. Figure 2.5 shows how scaling is represented in matrix form.
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Figure 2.4  Translation and its matrix representation.
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n o t e

Before I get ahead of myself, you may wonder what I mean by axes. When dealing with coordinates
in a 3D world, you need to be able to represent any position from a position that is at the center,
or origin, of the world. There is a reason why our world is considered three-dimensional; it implies
that we need three distinct coordinates defined along three axes, which are generally perpendicu-
lar. The best way to understand this concept is to imagine that you are in a room and want to define
the position of an object relative to you. You can use three axes to define where a specific object
is, such as saying that a lamp in the room is 3 feet to your left, 5 feet above your head, and 10 feet
in front of you.

Rotation Matrix
In addition to positioning and scaling objects in your world, you will need to rotate them.
In matrix form, the rotation is represented by a sequence of rotations along the object’s
X,Y, and Z axes. Figure 2.6 illustrates rotations and their matrix representation.

Now that you understand how the basic transformations can be represented in matrix
form, you still need to understand how to combine these operations to achieve the final
transformation matrix used to convert an object’s representation from object space into
world space. Combining several transformation operations in matrix form is straightfor-
ward and is performed by multiplying the matrices together. This is as far as I will go in
regards to matrix operations and linear algebra, because this is the bare minimum you
need to know to place an object onscreen. If this all seems like gibberish to you, I strongly
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Figure 2.5  Scales and their matrix representation.
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suggest you pick up a more complete 3D rendering book or a linear algebra textbook to
brush up on your 3D math. Try Course’s Mathematics for Game Developers by Christopher
Tremblay (ISBN: 159200038X).

Viewing It from a Camera
At this point, you should understand how an object is represented in a 3D world for ren-
dering purposes. I also gave a brief overview of how such objects can be positioned in your
virtual world through the use of matrix transformation operations. However, this is not
enough to enable you to render this world onscreen; there is still something missing.
Because we are viewing the world through a screen, this is very much equivalent to hav-
ing a camcorder positioned in the real world. To reproduce this behavior, we need to place
a virtual camera in our virtual world. The camera itself is positioned in the world in 
the same way as any other object—by using a transform matrix. This is illustrated in 
Figure 2.7.

With a camera placed in our world, to render our scene, we need to represent our objects
relative to the camera, or in camera space. To do this, we need to apply the inverse cam-
era matrix to each object’s transform. How to determine the inverse matrix is beyond the
scope of this chapter, but it essentially involves applying the reverse transformations
applied to the camera in the first place.

Once we have this inverse camera matrix, we can combine it with each object’s trans-
form matrix and get the camera space transformation for each object. This combined
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Figure 2.6  Rotations and their matrix representation.
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transformation, shown in Figure 2.8, essentially represents the objects in a form about the
camera’s origin instead of being relative to the world’s origin.

Are we rendering yet? Not exactly. Our camera is positioned in the world, but we still need
to render to the screen. Unfortunately, computer displays are still a flat 2D medium, and
we have to somehow represent our 3D geometry on that flat 2D surface. This is called pro-
jecting, therefore, the projection matrix. I will not go into details as to how the projection
matrix is derived, but Figure 2.9 demonstrates a standard perspective matrix and what
each component represents.
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Figure 2.7  Illustration of a simple scene with a camera.

Figure 2.8  Transforming an object from world space to camera space.
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From Figure 2.9, you can see that the equations can be daunting. The essential is that the
w and h components of the matrix define the width and height of the screen in terms of
the field of view of the camera (FOV), which is the size of the viewing cone defined by the
camera. The Q and QZ components of the matrix define the near and far clipping plane
of the camera, in essence the depth region for which your camera will render.

n o t e

There are several different types of projection matrixes that can be used, depending upon the coor-
dinate system used and 3D API specifications. In our example, we show a matrix based on the
Direct3D’s left-hand coordinate system.
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Figure 2.9  A projection matrix and its components.
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This projection matrix can be applied to objects in the same way other transforms are
applied. Multiplying this matrix by our object’s camera space transformation gives us a
screen space matrix. As Figure 2.10 shows, the object-camera-screen matrix essentially
takes an object from our world and transforms and projects it onto our screen.

Under the Hood
With the projection matrix applied to our vertices, we now have a representation of our
geometry that fits on the computer screen. Because we assume our objects are opaque, we
generally cannot see the inside of them. You cannot see the polygons from inside the
mesh, so you don’t need to render them. Most 3D architectures take advantage of this to
optimize rendering by removing the faces that are facing away from the camera; this is
called back face culling. Whether a polygon is facing the camera or not is determined by
whether the vertices in a polygon are being rendered clockwise or counterclockwise; this
is known as the polygon’s winding order.

Once this optimization is done, most renderers also perform clipping. Clipping serves two
main purposes. The first is to optimize the rendering by completely removing polygons
that are totally outside the screen. The second reason for clipping is to ensure that poly-
gons that are partially in the screen are trimmed to the size of the screen to reduce the
computational load.
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Figure 2.10  The process of projecting an object onto the screen using the projection matrix.
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Now we know where the polygons are on our screen, and whether they are visible, but we
now need to draw something on those polygons. Rendering architectures perform what is
called rasterizing. We know where our polygon is going to be onscreen, so we can now
determine which pixels the object will be occupying onscreen. The rasterizing process
usually divides the polygon into horizontal strips of pixels that can be rendered. For each
of those strips, the renderer can also interpolate the vertex information (position, color,
and texture coordinates) correctly, considering such things as the polygon’s 3D perspec-
tive onscreen.

For each pixel, we now have all the information we need to draw. At this point, however,
most renderers make another optimization to avoid drawing useless pixels. For each pixel
drawn onscreen, depth information is also stored in the Z-buffer. This Z-buffer keeps
track of the front-most pixels as the scene is rendered. For each new pixel (or fragment),
we can compare against the Z-buffer to determine if the pixel is visible or hidden behind
another pixel.

If the pixel is not occluded by other pixels, we can use the texture coordinates that have
been interpolated and combine them with the vertex color and other vertex information
to render the pixel on the screen. After the output color is determined, other rendering
operations, such as alpha blending and stencil testing, may occur before the pixel is put
onscreen.

Lather, rinse, repeat! Do this for every pixel of every polygon, and you have a rendered
scene. Keeping in mind that this is a fairly simplified overview of how rendering happens,
it should give you a good understanding of what happens under the hood. And as you can
see, a lot happens! Later in this chapter, you’ll learn how vertex and pixel shaders tie into
all this.

3D APIs
Now that we have seen how rendering usually happens within the hardware, there is still
a big piece of the puzzle missing. We need to be able to tell the hardware which geometry
to render and how to render it. Because of this, we need an API that is able to communi-
cate with the hardware.

The first consumer 3D card on the market, the 3Dfx, had its own proprietary API named
Glide. This API enabled you to communicate directly with the hardware and render your
geometry. However, such a proprietary API had a big shortfall. As other companies came
out with their own 3D hardware, it was almost impossible for developers to write 3D
applications that could work equally on all 3D graphics cards. There was a need for a more
standardized, non–hardware-specific API for 3D rendering. This need was answered by
OpenGL hardware drivers and Microsoft’s Direct3D.
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OpenGL
OpenGL was initially developed by Silicon Graphics, Inc. (SGI) in the late 1980s. It was
developed as a multipurpose, platform-independent, 3D graphics API. The first func-
tional public release of the OpenGL API was in 1990 with the release of Version 1.0. Since
1992, the development of OpenGL has been overseen by the ARB (OpenGL Architecture
Review Board). This review board is made up of major graphics card and industry lead-
ers, such as NVIDIA, ATI Technologies, IBM, Intel, SGI, and many more. The role of the
ARB is to keep the standard up to date and maintain the OpenGL specifications so that
they consider current and future industry needs.

The current mainstream version of OpenGL is Version 1.5. This implies that OpenGL
does not get updated often. However, the ARB is working hard on a new version of the
specifications, one that takes better advantage of the latest technologies.

OpenGL initially was designed to be used in high-end graphics workstations, and until
recently, it had the power to take full advantage of consumer graphics hardware. However,
with all the recent advances in computer graphics, such as multitexturing and vertex and
pixel shaders, the specifications to the API have fallen behind. Because of this, many
graphics hardware vendors have developed extensions to the standard to meet the require-
ments of the latest innovations. However, there has been little consensus over the last few
years in regards to extensions among vendors, and this has led to many proprietary exten-
sions that can only be used on specific hardware. The ARB is hard at work on their latest
specifications to ensure a more consistent feature set and better cooperation among ven-
dors, ensuring more compatibility with future extensions.

OpenGL offers a collection of several hundred functions, providing easy access to most
graphics features offered by your hardware. Internally, OpenGL acts as a simple state
machine. Using the API, you can set various parameters that control the state of the
machine, including such things as color, lighting, blending, and so on. Using the same
API, you can send geometry and rendering commands to the hardware, which will con-
sider the state of the internal machine within OpenGL.

At the center of OpenGL is the rendering pipeline; whether it is software or hardware, it
is implemented in much the same way discussed earlier in this chapter. The whole idea is
simple, but most of the effort behind OpenGL is to ensure support for current and future
hardware, as well as ensuring a cross-platform development environment.

DirectX and Direct3D
A little while after the release of Windows 95, the majority of games were still being devel-
oped for the DOS platform. Microsoft decided it was time for game developers to move
away from the antiquated DOS platform and towards the Windows platform, thereby
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increasing the popularity of Windows. Windows, however, did not make a good gaming
platform because its internal graphics API had too many abstraction layers and was tuned
for user interface development, so it was way too slow! At that point in time, Microsoft
decided to create an API aimed more at game development, allowing more direct hard-
ware access and allowing games to run under Windows at reasonable speeds.

Rather than develop its own 3D API from scratch, Microsoft noticed a promising 3D API
being developed by a company called RenderMorphics. It was a small project the company
developed and was promoting at trade shows. Microsoft decided to take advantage of this
API and integrate it as part of what was known at that time as the Game SDK. Eventually,
the Game SDK was renamed DirectX 1.0. But at that point, the API did not become widely
accepted because it was slow, buggy, and poorly structured.

On the plus side, Microsoft has been known through the years for not abandoning an idea
when it didn’t work out as they planned. They kept working at it, asking the developer
community for suggestions and feedback. In 1998 came the first truly viable version of the
SDK, dubbed DirectX 3.0. At that point in time, the API started taking form and getting
a broader adoption among developers. As the years went by, Microsoft has released Ver-
sions 5, 6, 7, 8, and finally Version 9.0 of the SDK. Each version has performed better and
offered more of the features the community wanted. One big step in the evolution of
DirectX was Version 8.0, which was the first one to include support for the now famous
vertex and pixel shader architectures.

The structure of Direct3D, and DirectX in general, is hugely different from OpenGL. As
time goes on, however, DirectX is slowly becoming more and more like OpenGL. Without
going into all the details, I’ll just say that DirectX is based on the COM object model. What
this means is that you create pointers to classes and use those, rather than just calling
functions that don’t clearly show associations, thus making DirectX better structured than
OpenGL.

Which One Is Better?
There has been major debate and battle in deciding which API is better: Direct3D or
OpenGL. On one side, Direct3D and DirectX only function on the Windows platform,
leaving little choice to cross-platform developers. However, if you are developing only on
the Windows platform, it is worth considering the pros and cons of each API.

Both APIs are straightforward to use. However, DirectX usually needs more initialization
code to get going. DirectX is updated more often and is better suited to take advantage of
the latest technologies than OpenGL. DirectX offers a better object-oriented structure than
OpenGL, but on the flipside, OpenGL is generally simpler to use. Most developers have a
bias towards one or the other, but new developers can easily be satisfied with either one.
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Because this book does not try to focus on any specific API, the answer to this debate will
remain unanswered here. Since RenderMonkey currently uses DirectX internally, a few of
the development constraints and concepts will come from the DirectX API. If you do
choose to develop using OpenGL, though, the lessons learned throughout this book can
be easily carried over.

Hardware Architecture
Now that we have a better understanding of how rendering happens and the major APIs
involved in the industry, I will briefly go over the common architecture taken by graphics
hardware vendors. Figure 2.11 outlines a simple hardware architecture taken by some
graphics hardware. Although this diagram is simple when compared to most modern
architectures, it serves the purpose of explaining how such hardware is implemented.
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Figure 2.11  Diagram of a possible hardware rendering architecture.
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As you can see from Figure 2.11, the whole rendering process can be divided into three dis-
tinct categories of operations: source operations, vertex operations, and pixel operations.

The source operations essentially take the incoming vertex data and prepare it for pro-
cessing. Some hardware architectures allow for high-order surface tessellation, which can
take a curved surface description as a geometry source and create polygons on the fly by
a tessellation process. Such high-order surfaces have the distinct advantage of allowing
more flexibility on the geometric detail based on certain criteria, such as performance and
screen size of the mesh.

The next sequence of operations is the vertex operations. This is where vertex shaders
come into play. As you can see from Figure 2.11, the incoming vertices from the source
operations phase can go either through the vertex shader block or the fixed-pipeline
block. The fixed-pipeline is the legacy, backward-compatible implementation, which can
take care of transforming and lighting the geometry. Because the fixed-pipeline is there
for backward-compatibility, most developers now choose to use vertex shaders. After the
vertices have gone through the vertex shader or fixed-pipeline block, they go through the
next block, which takes care of the final operations before the actual polygons are formed
from the vertex stream. The operations at this point include back face culling, clipping,
homogenous space division, and viewport considerations.

Now that your vertices have been massaged and are ready to be drawn, you can move on
to the pixel operation phase. The first block in the phase is the triangle setup and rasteri-
zation operation. What this does is take the incoming vertex stream, set up polygons from
it, and rasterize the triangles into screen pixels. As mentioned earlier, in the rasterization,
the screen coverage of the polygons in pixels is determined. After the coverage is deter-
mined, it is broken into smaller components, generally horizontal lines of pixels, which
are called fragments.

We now have pixels, but they still need to be finalized before they are drawn. This is where
our next block comes in. As with the vertex shader, here our pixels can go through either
our pixel shader or our fixed-pipeline. Either one of them will take the incoming inter-
polated pixel information from the rasterization and determine the final pixel color by
using texture lookups and other pixel operations. After the final color is determined, it can
go through the final set of blocks, which takes care of common rendering operations such
as fog, alpha testing, and stencil testing. This leaves us with a final pixel, which can be
blended onto the output buffer, ready to be displayed on our screen. One thing to note is
that with current hardware architectures, multiple pixels can be processed simultaneously
in parallel.

Voilà! Well . . . it’s a little more complicated than this in real life with the latest technolo-
gies. We’ve omitted some steps, such as Z-buffering, and new things, such as occlusion
testing and compression. However, this should give you a good idea of how our previously
discussed rendering algorithm integrates in a hardware architecture. More importantly, it
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gives you a much better idea as to where vertex and pixel shaders fit into the hardware ren-
dering flow of information. For the scope of this book, we will focus mostly on the vertex
and pixel shader operations that have been highlighted in Figure 2.11.

Shaders
You now have an understanding of how rendering happens. But where did shaders come
in, and how do they factor into the rendering equation? Computer graphics developers
soon discovered that photo realistic rendering has too many variables that cannot be
expressed as a simple set of equations or represented by a fixed set of states. In fact, most
photo realistic renderings depend partly on equations derived from research and partly on
taking real-life observations and trying to reproduce them. Because of this, developers
needed a way to fully control the flow of information so they could implement the com-
plex algorithms required for realistic renderings. One of the first incarnations of such
architectures, dubbed RenderMan, was developed by Pixar Animation Studios.

RenderMan is actually a standard that was developed a little over 15 years ago. Its purpose
was to specify an information exchange scheme to allow compatibility between 3D
authoring software and the actual renderer. In addition to specifying the format in which
data is exchanged, the standard also defined a programmable approach to materials,
allowing developers to specify how surfaces should be rendered. This was accomplished
through a simple language, similar to the C language, which allows developers to take the
incoming data from the renderer and apply their own algorithms before it is rendered.

RenderMan itself only defines a standard, but Pixar has developed an actual software ren-
derer based on it. Through the use of RenderMan and their own renderer, Pixar proved
the use of shaders could produce stunning computer graphics, and RenderMan has now
been used in countless CG movies. RenderMan itself was never designed to be used as a
real-time shading language and lends itself better to the rendering of movie-grade graph-
ics, which can take a long time to render, but served as the basis from which real-time
shading languages were defined.

Because of the success brought about by the flexibility of RenderMan, hardware makers
wanted the same flexibility for hardware-accelerated solutions. However, at the time,
hardware graphics processor performance wasn’t sufficient to allow for programmable
shaders, especially per-pixel shaders. Until a few years ago, hardware makers and develop-
ers had to live with the limitations of the fixed-pipeline rendering architecture. Finally,
with the leaps and bounds of silicon chip-making, hardware could be developed that
could finally include programmable shader support.

With the release of the DirectX 8.0 SDK came the first graphics chip capable of rendering
with hardware-accelerated shaders. The hardware developed by NVIDIA had limited
capabilities but fully implemented the vertex and pixel 1.1 shader standard. This first
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shader standard had limited functionality and did not include such things as conditional
statements and looping support. The pixel shader support also was very limited in terms
of instruction count and texture operations. However, this was the first time developers
could move away from the constraints of the fixed-pipeline and be allowed to express
their own creativity. At the same time, NVIDIA also released their own OpenGL extension
fully exposing their vertex and pixel shader architecture to developers.

Because of the fierce competition in the graphics hardware industry, ATI Technologies,
the main competition to NVIDIA had to respond to this first release of hardware acceler-
ated shaders. In collaboration with Microsoft, ATI Technologies developed vertex and
pixel shader version 1.4, which was released with the DirectX 8.1 SDK. This new version
added more flexibility to the pixel shader architecture by allowing more texture opera-
tions, more arithmetic operations, and the possibility of interleaving texture operations
with arithmetic operations. ATI now had their first generation of hardware-accelerated
shader technology. Because of the impending release of the DirectX 9.0 SDK, this incar-
nation of shaders was short-lived.

Microsoft decided it was time for a little more cooperation among hardware vendors, for
the sake of the developers. As they developed DirectX 9.0, Microsoft came up with two
new shader standards: version 2.0 and version 3.0. Along with the release of Microsoft’s
latest SDK, ATI and NVIDIA launched their first iterations of vertex and pixel shader 2.0.
This new shader standard finally added all that developers could wish for. The new func-
tionality included more instructions per program, conditional expressions, and loops
statements.

This is where we are today. We, the developers, now have the same level of functionality
that movie CG developers have, and as we can see in the latest technology demos, the
quality of graphics never ceases to increase. So what does the future have in store for us?
First of all, version 3.0 of the vertex and pixel shader standard will give developers even
more power and flexibility. Secondly, with the ever-increasing speed and power of the
graphics hardware, industry leaders predict that within the next few years, real-time
graphics will equal or surpass the quality of movie CG. This places a much bigger burden
on developers because they have to keep up with the crazy evolution. On the flip side,
however, we can finally achieve the graphics we have always dreamed of.

It’s Your Turn!
There isn’t much to do at this point because we are still going over the basics. If you feel
lost with all this matrix math and linear algebra, I strongly suggest you get your hands on
an algebra textbook and brush up on your math knowledge. Not that much is needed to
understand 3D, but you will still need a good understanding of the basics of matrix and
vector math to apply the principles learned throughout this book.

It’s Your Turn! 35

TEAM LinG - Live, Informative, Non-cost and Genuine !



What’s Next?
Now that we have a better overhead picture of all that is involved in 3D graphics, it is time
to zoom in on our main topic of interest: shaders! I have promised to keep us away as
much as possible from non-shader programming and 3D APIs, but we have one more
thing to learn before we get our hands dirty . . . RenderMonkey.

This powerful tool, developed by ATI Technologies, allows us to learn and use shaders in
an intuitive and flexible way. So fire up your computer, and let’s start learning . . .
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RenderMonkey 
Version 1.5

chapter 3

With the release of the DirectX 9.0 SDK, vertex and pixel shader 2.0 and 3.0
were introduced. These revolutionary new models were great technological
breakthroughs and finally made it possible for game developers and artists to

consider developing shaders with the use of a high-level language. Because of this,
Microsoft has developed the High-Level Shader Language, dubbed HLSL, and included it
with their DirectX SDK. However, even to develop and test simple shaders, there is a need
to create 3D applications that are dependent on a specific rendering API. Since such an
approach needs a fair quantity of code and a basic set of programming skills, it restricts
development to intermediate or advanced developers and prevents artists from using their
creativity to develop shaders on their own without support from a programmer.

As a response to this issue, ATI Technologies developed a free tool named RenderMonkey.
RenderMonkey is a powerful tool that is used throughout this book as a development tool,
allowing anybody to develop shaders without any formal programming background. In
this chapter you will learn about RenderMonkey and its use. See Appendix B, “Render-
Monkey 1.5 User Manual,” for a more complete guide to RenderMonkey. The first section
of this chapter serves as an overview of RenderMonkey’s interface and features. In the sec-
ond section, you will be guided through the composition of a simple shader within Ren-
derMonkey. As you work your way through this chapter, you will gain a hands-on
understanding of how shaders are made using RenderMonkey.
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Introduction to RenderMonkey
Recently, ATI Technologies released Version 1.0 of their RenderMonkey tool. This appli-
cation serves as a simple user interface aimed toward the quick development of shaders
and effects. Among its design goals, it considers many factors:

■ Shaders are more than just code. They require a framework that takes care of
setting up other needed components, such as geometry and textures. Such a tool
must handle all this setup and encapsulate it in an easy-to-use way without requir-
ing external code.

■ Current methods of shader development are time-consuming and require good
quantities of code. This makes the task more difficult and the sharing of technol-
ogy more restrictive.

■ Any shader development tool should help bridge the gap between artists and pro-
grammers by removing any API dependencies. Such a tool should also remove the
need for programmer intervention in the development of simple or complex
shaders.

■ The framework for the tool must be flexible enough to allow it to adapt to future
technology needs.

Keeping those factors in mind, ATI came up with RenderMonkey, a powerful and efficient
tool for shader development. It significantly simplifies and speeds up the shader creation
process, making shader development more accessible to any user with a basic under-
standing of 3D graphics. RenderMonkey Version 1.5 is used throughout this book as the
main shader development tool.

Our First Look at RenderMonkey
As you can see in Figure 3.1, there are many subwindows in the main window of Render-
Monkey! All of them have straightforward purposes, and I will go over them one by one.

At this point, it is a good idea to have RenderMonkey installed and ready to go. This way
you can see for yourself how RenderMonkey works as we explore it. Installation instruc-
tions for RenderMonkey are found in Appendix B, “RenderMonkey 1.5 User Manual.”

The first and most important window of all is the workspace window, which is located on
the left side of the application. This is the staging area where you will compose your
shaders by combining various elements in a structured manner. Looking at the zoomed-
in version in Figure 3.2, you can see that it contains many different types of elements,
which can be categorized into four groups:

■ Grouping elements serve the obvious purpose of grouping elements into a hierar-
chy. Examples are effect groups, effects, and rendering passes.
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■ Parameters define constants the shader uses such as
matrices, vectors, or colors. The artist editor discussed
in the following pages can also be used to set such para-
meters in a user-friendly way.

■ States control the behavior of a shader or effect. They
consist of shader code, hardware render states, or vertex
stream mappings.

■ Resources form the data (usually from an external
source) used by the shader. Common examples are tex-
tures and geometry.

To build a shader, simply to insert the suitable set of elements
within the workspace window; RenderMonkey displays the
result right away. For the moment, don’t worry about what
each type of element does; we’ll discuss each one individually
later in this chapter. All you need to know is that every work-
space consists of a set of effect groups. Each effect group, in
turn, contains a set of effects, which can then enclose one of
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Figure 3.1  RenderMonkey, in action rendering a simple shader.

Figure 3.2  Close-up
view of RenderMonkey’s
workspace window.
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many passes. Finally, every rendering pass contains parameters, states, and resource ele-
ments for use by the shader.

n o t e

RenderMonkey saves its workspace data in an .RFX file, which is simply an XML file. If you feel com-
fortable with the XML format, you can open it in a text editor and edit it manually. If you are pro-
gramming a 3D game or application, you could also support its format natively, significantly
reducing your integration time from prototype to final product.

This brings me to the second most important window in RenderMonkey, the preview
window, as shown in Figure 3.3. The preview window is where you get to see the fruits of
your labor. RenderMonkey draws a final version of your shader in this window based on
the elements you specified.

Using the mouse button, you can rotate the camera around your objects, which allows you
to see your shader from any angle. With the right mouse button, you can bring up a con-
text menu that allows you to reset the camera into some predefined angles and do other
tasks, such as showing object-bounding boxes and resizing the view to fit the object to
screen. Also, using buttons in the toolbar at the top of the RenderMonkey application, you
can change the mode in which the camera is affected by your mouse movements. Finally,
if you don’t see what you expect in the preview window, make sure to check the output
window for any code errors, and double-check your shader code for any logic errors.
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Figure 3.3  Close-up of the preview window
showing a simple shader in action.
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n o t e

You may have noticed the little tab right above the preview window. When windows such as the
preview window are maximized, it may be difficult to navigate from one window to another. These
tabs will show you all open windows and give you a quick-and-easy way to access them.

This obviously brings us to the output window. It will come in handy, especially if you are
prone to coding errors! In this window, RenderMonkey displays shader compilation
errors and other useful warnings it encounters when compiling your shader. Figure 3.4
contains a screen shot of what a sample output looks like.

t i p

If you have errors showing up in the output window, you can double-click with your mouse on that
line, and RenderMonkey opens the editor window for you with the cursor on the offending line of
shader code.

The next window in our RenderMonkey exploration is the editor window, which was not
shown in Figure 3.1. This is where you type your shader code. In the current version of
RenderMonkey, you can type your code as either HLSL or in vertex and pixel shader
assembly language. Throughout this book, we will focus only on the use of the High-Level
Shader Language because it is much easier to learn and understand. HLSL is also easier
because it allows you to focus more on the actual shader creation process and less on lit-
tle details like instruction optimization and register allocations.

As you can see in Figure 3.5, the Editor Window actually consists of two parts. The top
section consists of general settings and helpers for your shaders, such as target shader ver-
sion and shader entry point. Finally, the bottom part of the window contains the shader
source code in an easy-to-edit, color-highlighted form. You may also notice that the sta-
tus bar for the editor window gives you statistics on your shader in regards to its instruc-
tion count and performance.
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Figure 3.4  Sample output in the output window.
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t i p

Take note of the tabs and drop-down list at the top of the editor window; they allow you to quickly
switch between all the shaders in your workspace. This is a nice timesaving shortcut!

The last window we need to look at is the artist window. As shown in Figure 3.6, this win-
dow simplifies tasks for artists by allowing them to manipulate shader parameters with-
out getting their hands dirty. All parameter elements exposed within the workspace
window show up here as a handy set of edit boxes, sliders, and color pickers. You can
change any of the parameters and see the new result on the fly. This is a great way for
artists to experiment with shader parameters and see the results right away, before they
use the shaders in their regular production environment.

Autopsy of a Shader
Now that you have a basic understanding of RenderMonkey’s layout, it is time to explore
a little deeper by taking a simple shader and performing a little autopsy on it. With this
hands-on knowledge, you will have all you need to get started and build your very first
shader in Chapter 4, “Getting Started, Your First Shaders.”

For the remainder of this chapter, I’ll assume RenderMonkey is installed and ready to go.
For installation instructions, refer to the user manual in Appendix B.

The first step is to fire up the RenderMonkey application. From the start menu in Win-
dows, select Start: Programs: ATI Technologies: ATI RenderMonkey: RenderMonkey. Fig-
ure 3.7 shows an example of where the RenderMonkey program might be found on your
computer.
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Figure 3.5  A close-up view of RenderMonkey’s editor window.
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Figure 3.6  A view of the artist window.

Figure 3.7  How to start RenderMonkey from the Windows Start menu.

TEAM LinG - Live, Informative, Non-cost and Genuine !



After RenderMonkey starts, you need to open the sample shader you will use. For the 
purpose of this chapter, you will use one of the sample shaders supplied with the tool. To
open the workspace, either select File: Open from the menu or click the first icon on the
toolbar. You then need to select the bubble.rfx shader file. The process used to open 
the sample shader is illustrated in Figure 3.8.

At this point, the workspace you selected should be displayed within the user interface.
You can first look around the object by using your mouse to manipulate the camera
within the preview window. If you don’t see the preview window, click the Preview tool-
bar icon at the top of the application. Now, get yourself acquainted with the different cam-
era types by selecting different modes from the right side of the toolbar at the top of the
application. As you can see, you can rotate, move around, and even zoom in on the results
of the bubble shader.

Now, let’s take a look at the skeleton for this shader. Figure 3.9 shows the workspace view
for this shader.
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Figure 3.9  Close-up
view of the workspace
associated with our
sample shader.

Figure 3.8  How to open a sample shader through RenderMonkey.
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With the workspace open, you can explore its content element by element. The first node
underneath the workspace root is called Header, and this is simply an information node
containing some general project comments. The first node of real interest is the next one,
named view_proj_matrix. As mentioned in the user manual, this is a stock variable that
contains the transformation matrix that is used to do the projection of the vertices from
3D coordinates to 2D screen positions. You will not need to set this variable, because it is
filled in automatically by RenderMonkey.

The next item in the workspace is called PNTT Stream Mapping. This node defines how
the geometry information is to be sent to the vertex shader. Essentially, this node defines
how the information from the geometry will be mapped to the input registers and vari-
ables within your shader. If you double-click this item, you will get the dialog box shown
in Figure 3.10.

As you can see, the current stream is composed of four elements: position, normal, tex-
ture coordinates, and tangent. The mapping defines which piece of information the ver-
tex shader needs, what registers to send it to, and how it should be represented. Now close
this dialog box and take a look at the following node. This is an effect group that contains
an effect named ASM Bubble Shader. Each effect group essentially represents a different
individual shader defined within your workspace. Because you can define multiple
shaders within a single RenderMonkey workspace, this is a convenient way to organize
your effects.

Under the effect group node, you can see a long list of variables. They serve as constants
to be used by the shader to control its behavior. Take a note of the time_0_x variable, which
is another built-in constant containing the current time in seconds. This variable is use-
ful when you’re developing shaders that are animated over time.

Following the bunch-o-variables are two nodes named basemap and cubemap. They are the
textures used by the pixel shader to render the effect. The first one is used to color 
the bubble, and the second one serves as an environment map to handle reflections.
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Figure 3.10  Close-up view of the stream mapping
window for our sample.
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Double-clicking on any texture node brings up a file selection dialog box where you can
select a .DDS file (or other standard image file format) to use as a texture.

Now look at the next node, named Torus. This node defines the geometry used by the
shader. Currently, RenderMonkey only supports .3DS and .X files. .3DS files require
3DStudio MAX for editing, and .X files are a format developed by Microsoft that can also
be edited through 3DSMax. Do not worry, though; RenderMonkey includes a fair num-
ber of sample models for you to use. Double-clicking on the geometry node brings up a
dialog box that prompts you to choose a model file on your computer.

The next two nodes are render passes named front faces and back faces, the meat of this
effect! Shaders can be composed of multiple passes, each of which renders a different ver-
sion of the geometry. They serve as an easy way to break complex shaders into smaller
subsets. Here we will only consider the front faces pass, because the second one is some-
what redundant. Open the render pass, and you will see seven new nodes.

The first node in the render pass is simply a geom-
etry reference node that points back to a model
previously loaded in the workspace. The second
node is a render state node; if you double-click it,
you will see a new dialog box with a list of states
with values for those that were modified, as shown
in Figure 3.11. For example, you can see that ALPH-
ABLENDENABLE has been set to TRUE, telling the hard-
ware to blend the final color of this pass with what
is already in the background.

The two following nodes are the core of the effect:
the pixel and vertex shaders. This sample shader
uses assembly code for its shader code, so we will
not look at it. However, for reference and in case
you don’t have RenderMonkey handy right now, I
have included the source code for this shader:

vs.1.1

dcl_position v0
dcl_normal v1
dcl_texcoord v2
dcl_tangent v3

// c0 - { 0.0, 0.5, 1.0, 2.0}
// c1 - { 4.0, .5pi, pi, 2pi}
// c2 - {1, -1/3!, 1/5!, -1/7!} for sin// c3 - {1/2!, -1/4!, 1/6!, -1/8!} for cos//
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Figure 3.11  Close-up view of the
render state window for our sample.
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c4-7 - Composite World-View-Projection Matrix
// c8 - Model Space Camera Position
// c10 - {1.02, 0.04, 0, 0} fixup factor for Taylor series imprecision
// c11 - {0.5, 0.5, 0.25, 0.25} 
//         waveHeight0, waveHeight1, waveHeight2, waveHeight3
// c12 - {0.0, 0.0, 0.0, 0.0} 
//         waveOffset0, waveOffset1, waveOffset2, waveOffset3
// c13 - {0.6, 0.7, 1.2, 1.4} 
//         waveSpeed0, waveSpeed1, waveSpeed2, waveSpeed3
// c14 - {0.0, 2.0, 0.0, 4.0} 
//         waveDirX0, waveDirX1, waveDirX2, waveDirX3
// c15 - {2.0, 0.0, 4.0, 0.0} 
//         waveDirY0, waveDirY1, waveDirY2, waveDirY3
// c16 - { time }
// c17 - {-0.00015, 1.0, 0.0, 0.0} base texcoord distortion x0, y0, x1, y1
// c18 - World Martix

mul r0, c14, v2.x // use tex coords as inputs to sinusoidal warp 
mad r0, c15, v2.y, r0 // use tex coords as inputs to sinusoidal warp 

mov r1, c16.x // time...
mad r0, r1, c13, r0 // add scaled time to move bumps according to frequency
add r0, r0, c12
frc r0.xy, r0 // take frac of all 4 components
frc r1.xy, r0.zwzw
mov r0.zw, r1.xyxy

mul r0, r0, c10.x // multiply by fixup factor sub r0, r0, c0.y // subtract
.5
mul r0, r0, c1.w // mult tex coords by 2pi coords range from(-pi to pi)

mul r5, r0, r0 // (wave vec)^2
mul r1, r5, r0 // (wave vec)^3 
mul r6, r1, r0 // (wave vec)^4 
mul r2, r6, r0 // (wave vec)^5
mul r7, r2, r0 // (wave vec)^6
mul r3, r7, r0 // (wave vec)^7 
mul r8, r3, r0 // (wave vec)^8

mad r4, r1, c2.y, r0 // (wave vec) - ((wave vec)^3)/3! 
mad r4, r2, c2.z, r4 // + ((wave vec)^5)/5! 
mad r4, r3, c2.w, r4 // - ((wave vec)^7)/7! 
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mov r0, c0.z // 1
mad r5, r5, c3.x ,r0 // -(wave vec)^2/2!
mad r5, r6, c3.y, r5 // +(wave vec)^4/4!
mad r5, r7, c3.z, r5 // -(wave vec)^6/6!
mad r5, r8, c3.w, r5 // +(wave vec)^8/8!

dp4 r0, r4, c11 // multiply wave heights by waves

mul r0, r0, v1 // apply deformation in direction of normal

add r0.xyz, r0, v0 // add to position
mov r0.w, c0.z // homogenous component

m4x4 oPos, r0, c4 // OutPos = WorldSpacePos * Composite View-Proj Matrix
mov oT0, v2 // Pass along texture coordinates

;This is where the shader starts to diverge a bit from the Ocean shader. \;
First the binormal is computed

mov r3, v1
mul r4, v3.yzxw, r3.zxyw
mad r4, v3.zxyw, -r3.yzxw, r4 // cross product to find binormal

;Then the normal is warped based on the tangent space basis vectors 
;(tangent and binormal).

mul r1, r5, c11 // cos * waveheight
dp4 r9.x, -r1, c14 // amount of normal warping in direction of binormal
dp4 r9.y, -r1, c15 // amount of normal warping in direction of tangent
mul r1, r4, r9.x // normal warping in direction of binormal
mad r1, v3, r9.y, r1 // normal warping in direction of tangent
mad r5, r1, c10.y, v1 // warped normal move nx, ny

;The normal is then renormalized.

mov r10, r5
m3x3 r5, r10, c18 // transform normal
dp3 r10.x, r5, r5
rsq r10.y, r10.x
mul r5, r5, r10.y // normalize warped normal
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;Next the view vector is computed:
mov r10, r0
m4x4 r0, r10, c18 // transform vertex position

sub r2, c8, r0 // view vector
dp3 r10.x, r2, r2
rsq r10.y, r10.x
mul r2, r2, r10.y // normalized view vector

;Then the dot product of the view vector and the warped normal is computed:

dp3 r7, r5, r2 // N.V 
mov oT2, r7 // Pass along N.V

; This is used to compute the reflection vector.

add r6, r7, r7 // 2N.V
mad r6, r6, r5, -r2 // 2N(N.V)-V
mov oT1, r6 // reflection vector

Pixel shader code for our sample shader:

// c0 - (0.0, 0.5, 1.0, -0.75)
// c1 - (0.6, 0.1, 0.0, 0.0) Alpha Scale and bias
ps.1.4

texld r0, t0
texld r1, t1
texcrd r2.rgb, t2

cmp r2.r, r2.r, r2.r, -r2.r // abs(V.N)
+mad_x4_sat r1.a, r1.a, r1.a, c0.a // 4 * (a^2 - .75), clamped

mul_x2_sat r2.rgb, r0, r1 // base * env (may change scale factor later)
+mad r2.a, 1-r2.r, c1.x, c1.y // alphascale * abs(V.N) + alphabias

lrp r0.rgb, r1.a, r1, r2 // Lerp between Env and Base*Env
+add r0.a, r2.a, r1.a // Add glow map to Fresnel term for alpha
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Following the shader code are two texture nodes
named basemap and cubemap. They map the texture
variables previously set to hardware texture sam-
plers and enable those textures for use within the
shader. Double-clicking either of the nodes brings
up the dialog box shown in Figure 3.12.

In this dialog box, there is a thumbnail for each
texture used in the pass and a set of sampling
stage states to tell the graphics hardware how the
textures should be sampled. These states can spec-
ify things  such as whether the texture should be
tiled or not, how mipmapping should be handled,
and so forth. Many of the states in the dialog box
are for the fixed function pipeline and can be dis-
regarded.

The final node to look at is the stream mapping
reference named PNTT Stream Mapping. This
enables you to specify a reference to a previously
defined stream mapping within your workspace,
telling RenderMonkey how the geometry infor-
mation should be sent to the vertex shader of this
particular rendering pass. If you wish to edit a particular stream mapping, you will need
to edit the original node because you cannot change references.

It’s Your Turn!
Your task is easy for this chapter! Simply play around with this shader, look at it from dif-
ferent angles, and change some render states. If you feel like it, you can even take a look at
the shader code and change it. Now is the best time for you to get acquainted with the look
and feel of RenderMonkey.

What’s Next?
As you have seen, RenderMonkey is a powerful tool when it comes to shader and effect
design. With its component-based architecture, it makes shader development a cinch
without making you spend much time setting up your scene.

Now that you have a good grip on the layout and functioning of RenderMonkey, you can
finally start using it to create your first shader in the next chapter.
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Figure 3.12  Close-up view of the
texture window for our sample.
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Getting Started, 
Your First Shaders

chapter 4

Now that you have a basic understanding of 3D graphics, the importance of
shaders, and how RenderMonkey works, it is finally time to get your hands dirty
and write your first set of shaders. We’ll start with some basic shaders, which

should give you a handle on how everything fits together before you start exploring real
algorithms and techniques.

In this chapter, you will create three simple shaders that do simple tasks such as display-
ing an object and texturing it. The resulting shaders and the data needed for them are
included on the CD-ROM and can be used to compare your results with mine. The exer-
cises at the end of the chapter will help you expand the shaders you develop here.

Your First Shader
Your first shader will be as simple as possible. You will draw a little teapot with no texture
and a constant color. Then you will add texture and more color to your teapot. To get
ready, start up RenderMonkey on your computer. Note that all the assets needed for this
shader are found in the source code directory for this chapter on the CD-ROM.

The first thing you need is an effect group to contain your shader. To create one, right-
click on the workspace root node and select Add Effect Group: Effect Group w/DirectX
Effect. You should see something already being rendered in your Preview Window. This is
because RenderMonkey fills the new effect group with a sample effect, as shown in the
workspace in Figure 4.1. Because you want to do everything from scratch in this chapter,
you should delete all the nodes under the effect group except for the effect node. To do so,
select the nodes you want to delete and press the Delete key. Another way to accomplish
the same thing is to use the right-click menu and select Add Effect Group: Empty Effect
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Group. You might also want to rename the effect group to something more meaningful,
like MyEffect, by right-clicking on the Effect Group node and selecting Rename.

Do not worry if you see error messages when deleting nodes from an effect. This is Ren-
derMonkey’s way of letting you know some items are missing for it to be able to render a
shader. The errors can be ignored for now, because you will be adding these elements.

n o t e

RenderMonkey enables you to create default effect data when you create a new Effect Group or
Effect node. This is a great time saver later on. For this chapter, we will create everything from
scratch because you want to learn how everything is set up.

To get anything on the screen, you definitely need some geometry to render. So at this
point, you will need to add a new model to your shader. Right-click on the Effect node
you just added, and select the Add Model option from the context menu that appears. A
new model node will be created for you. You can now rename the node MyModel
through the right-click menu, and select the proper geometry file by double-clicking the
model node. This brings up the Open Model menu, as shown in Figure 4.2. Browse to
the chapter’s source code directory, select the teapot.3ds file, and click the Open button.

With your geometry set up and ready, you need to tell RenderMonkey how the geometry
information will be sent to the vertex shader. This is done by using a Stream Mapping
node. This node contains the settings necessary to translate the information from your
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Figure 4.1  Default Effect Group created by RenderMonkey.
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model to something your shader can use. Specifically, this node will map information
from the geometry to specific input registers within your vertex shader. To accomplish
this, right-click on the Effect node and select the Add Stream Mapping option. As illus-
trated in Figure 4.3, double-clicking on the new Stream Mapping node will bring up the
stream mapping editor. Initially, this editor only contains positional information, but
clicking the Add button will allow you to add more stream information, such as normals
and texture coordinates, which is enough for this shader. You are done setting up your
stream mapping, so you should now close the editor window.

Your First Shader 53

Figure 4.2  Selecting the model file for your shader.

Figure 4.3  Setting up the stream mapping for your teapot
model.
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Because your shader is going to be basic, at this point you will only need to add a single
variable, the view-projection matrix. Although this is a built-in variable supplied by Ren-
derMonkey, it must still be added to the workspace before it can be used in a shader.
Right-click on your Effect node and select Add Variable: Matrix: Predefined:
view_proj_matrix from the menu. This creates a matrix that will be filled automatically by
RenderMonkey with the combined model/view/projection matrix used to display your
object, allowing you to transform the incoming vertices from object space into screen
space.

At this point, you have all you need in your effect except for the effect rendering pass itself.
To add a new rendering pass, right-click on the Effect node and select the Add Pass option.
This creates a new effect pass, which is filled with a sample effect. You may now rename
your rendering pass My Pass and delete the contents of the effect so you can create it from
scratch.

The first two things needed for your rendering pass are a reference to a model and stream
mapping. Although you can add models and stream mapping at any point in your effect,
you still need to tell RenderMonkey which ones to use for each particular pass. To set up
a reference for the model, simply right-click on your Pass node and select Add Model Ref-
erence. This creates a model reference holder, but it still needs to point to the right model.
To select the actual model reference, right-click on your new Model Reference node and
select the Reference Node option, as shown in Figure 4.4. This brings up a list of models
that can be selected, from which you can pick MyModel. For the stream mapping refer-
ence, simply repeat the same process by picking Add Stream Mapping Reference from the
Pass node right-click menu.
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The last thing needed for your shader is the vertex and pixel shader code. Let’s start by
adding a new vertex shader to your pass by right-clicking the render Pass node and select-
ing Add Vertex Shader: DirectX HLSL. The newly created vertex shader will be filled with
some default code, but you will replace it with your own. You may now double-click the
vertex shader node to pop up the shader editor window.

As you can see in the code editor part of the window shown in Figure 4.5, the
view_proj_matrix variable is already preset because most shaders will need it. Generally, to
set up this variable, simply add the variable to the shader code as you would declare any
other variables. For more information on this, you should refer to the HLSL Reference
Manual in Appendix B. The variable declaration for your view-projection matrix looks
like this:

float4x4 view_proj_matrix;

If you had other variables in your shader, you would insert them at this point. But for now,
this is all you need, so you should now add the code needed for your vertex shader. The
first thing you need to define is the structure used to pass the vertex information 
from your vertex shader onto your pixel shader. You can define this in a structure called
VS_OUTPUT, but you can give any name you wish. Because all you need at this point is the
position of the vertex, the structure should be the following (which is the default struc-
ture created for you by RenderMonkey):

struct VS_OUTPUT
{

float4 Pos:     POSITION;
};

This structure essentially creates a vector variable as part of the structure named Pos and
has a semantic of POSITION. The semantic defines the meaning of the variable and how it
should be passed along to the pixel shader.

The core of the shader is the entry point function defined in the Entry Point field within
the vertex shader editor. Assuming you’ll call your function vs_main, you can define an
empty function that will serve as the template for your vertex shader. The parameters to
the function must also be defined so the stream mapping values needed are passed to your
function. For this simple shader, all you need is the vertex position, so the empty function
for your vertex shader will look as follows:

VS_OUTPUT vs_main( float4 inPos: POSITION )
{

VS_OUTPUT Out;
return Out;

}
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Take note that the input parameter inPos is followed by the semantics declaration POSITION.
This tells the vertex shader how to map the geometry stream information to this 
input parameter. Also take note that the function defines and returns a variable of type
VS_OUTPUT. This is the information that will be passed on from your vertex shader to your
pixel shader after the vertices are processed. This information is also passed to the pixel
shader as a return value to your vertex shader function. Because all this vertex shader
needs to do is display your geometry with no special processing, the only thing needed is
to transform the incoming vertex positions with the view-projection matrix and return
the resulting value. This is done by multiplying the vertex position with your
view_proj_matrix:

Out.Pos = mul(view_proj_matrix, inPos);

This shader will take the incoming geometry from your teapot, transform and project it
into the screen, and send the final information to the pixel shader. Here is what the final
code looks like:

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
};

VS_OUTPUT vs_main( float4 inPos: POSITION )
{

VS_OUTPUT Out;

// Output a transformed and projected vertex position
Out.Pos = mul(view_proj_matrix, inPos);

return Out;
}

That does it for your vertex shader; you now need to define the pixel shader for this effect.
Close the current shader editor, right-click on the Pass node, and select Add Pixel Shader:
DirectX HLSL from the context menu. If you double-click the new Pixel Shader node, you
will see the shader editor with a default pixel shader created by RenderMonkey. The
default code supplied looks like this:

float4 ps_main( float4 inDiffuse: COLOR0 ) : COLOR0
{

//  Output constant color:
float4 color;
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color[0] = color[3] = 1.0;
color[1] = color[2] = 0.0;
return color;

}

n o t e

Under DirectX and OpenGl, normally you can render using either a vertex shader, pixel shader or
both; falling back on the fixed-pipeline for the unused portion. However, since RenderMonkey is
intended as a shader development platform, it does require you to create both a pixel and vertex
shader before it can render anything on the screen.

Notice that this default shader returns a float4 value with the semantic COLOR0. This defines
the return value of the function as the final color to render onto the screen and is gener-
ally the only semantic marker you will use in your pixel shaders. The other thing worth
mentioning is the input variable inDiffuse, which also has the semantic COLOR0. This value
maps a vertex shader output with the same semantic to the pixel shader input. You do not
need the input color because your vertex shader does not supply it, so you can take that
input parameter out. Also, you can now change your shader to make your object red. If
you apply those two steps, the resulting pixel shader code becomes the following:

float4 ps_main() : COLOR0
{

// Output a constant color
float4 color = float4(0,0,0,0);
color.r = 1.0;

// Set the alpha value to 1.0 to avoid alpha blending
color.a = 1.0; 

return color;
}

n o t e

You may have noticed that in both the vertex and pixel shader editors, your shader target was set
to version 1.1. Although most of the shaders you build in this book require you to set the target to
version 2.0, the shaders in this chapter are simple enough not to require this change, and we did
not bother with it. Generally, if your shader is simple enough to run on a lesser version of pixel and
vertex shader, stick with that version number, because the shader may run more efficiently on cer-
tain hardware architectures.

Your First Shader 57

TEAM LinG - Live, Informative, Non-cost and Genuine !



There you go, your first shader. Now that everything is complete, you can click the Com-
pile All Shaders in Active Effect toolbar button (or press the F7 key). You should see a red
teapot in the preview window, as shown in Figure 4.5. If the preview window does not
show up, you may need to click the Preview button on the toolbar. Also, if you do not see
a teapot, make sure to check the output window, because you may have made a typo in
your shader, preventing it from compiling properly. A functional version of this shader is
available as shader_1.rfx on the CD-ROM in the source code directory for this chapter.

Texturing Your Object
Now that you have a red teapot rendering, how about adding a little more color by apply-
ing a texture to it? Because you are simply extending your previous shader, you’ll use it as
a starting point and add on to it. The final shader for this section can be found as
shader_2.rfx on the CD-ROM.

Use the shader from the previous section and close any open editor or preview windows.
Obviously, the first thing you will need to add to the shader is a texture. To do this, right-
click on the effect node and choose the Add Variable option from the context menu. From
the variable editor window, pick the TEXTURE type and type in “My Texture” as the name
for your texture variable, as shown in Figure 4.6. After this variable is created, double-click
it to bring up the file selection dialog box, and pick the fieldstone.tga file from the 
CD-ROM in the source code folder for this chapter.
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Now that you have a texture in your effect, you have to let the render pass know that it
must use this texture. You can do this by adding a texture object to your render Pass node
through the right-click menu. To this newly created texture object, you will need to add a
texture reference node by right-clicking on the texture object and selecting Add Texture
Reference. To point this reference to a specific texture, you will need to right-click on the
reference and pick which texture this reference points to, like you did with model or
stream mapping references. By double-clicking the texture object node, you will get the
texture state editor window. This editor shows you different states that can be set to con-
trol how the texture will be accessed by the hardware, along with thumbnails of all your
textures in a specific rendering pass. However, for this shader, the default values in the edi-
tor will do fine.

With a texture set up and ready, all you need to do at this point is set up the vertex and
pixel shaders to make use of it. The first thing you need to do is make the vertex shader
aware of the texture mapping coordinates on your object so you can pass them to the pixel
shader. To make this happen, you need to create an input parameter to your vertex shader
function, one which takes a value from the TEXCOORD0 semantic as defined in your stream
mapping node. This is done through the following code added to your vertex shader func-
tion parameters:

float2 Txr1: TEXCOORD0
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Figure 4.6  Setting up a texture variable and selecting a texture file.
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You will also need an output variable so you can route the texture coordinate through to
the pixel shader. This is done by changing your VS_OUTPUT structure to the following:

struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;

};

Because you will not be doing any special processing on the texture coordinates, all the
shader needs to do is route the texture coordinates straight from the input parameter to the
output structure. The resulting vertex shader code with all your adjustments is as follows:

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float2 Txr1: TEXCOORD0

)
{

VS_OUTPUT Out;

// Output our transformed and projected vertex
// position and texture coordinate
Out.Pos = mul(view_proj_matrix, inPos);
Out.Txr1 = Txr1;

return Out;
}

You are finished with the vertex shader for now; switch to the pixel shader by clicking the
Pixel Shader tab at the top of the shader editor window. The first thing your pixel shader
needs is a sampler variable. This variable tells your pixel shader which textures are avail-
able for use, in the same way you had to create a variable in your vertex shader for your
view_proj_matrix. You can add a sampler by simply adding the variable to the top of your
pixel shader of type Sampler and with a name that corresponds to the name of the texture
object you want to reference.
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This will add the following variable to the constant part of the shader editor:

sampler Texture0;

To access this texture, you need to adjust the pixel shader slightly. First, set up the texture
coordinate input parameter to the shader function. This is done the same way it was 
done for the vertex shader and requires adding a parameter that points to the TEXCOORD0
semantic. The second thing to do is read pixels from within the shader by using the tex2D
function. Reading a texture with a specific sampler and texture coordinate named inTxr1
can be done through the following code:

tex2D(MyTexture,inTxr1);

With this function call, you can finally put the shader together. The final pixel shader code
with all the changes is as follows:

sampler Texture0;
float4 ps_main(

float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0

) : COLOR0
{

// Output the color taken from our texture
return tex2D(Texture0,inTxr1);

}

You are now done and ready to see the fruits of your labor. As you did with your previous
shader, close the shader editor and click the Compile All Shaders in Active Effect toolbar
button. You should now see a textured teapot, as shown in Figure 4.7.
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Seeing Double
Our first two shaders illustrate some basic ideas in shader building. In real-life applica-
tions, you will usually have multiple objects in your scene. In this section, I will show you
how to expand your previous shaders to render two teapots instead of one. This can be
accomplished easily with RenderMonkey by using multiple render passes, one for each
object to be rendered.

To add a second teapot to your scene, add another render pass node by right-clicking on
your Effect node and selecting Add Pass from the context menu. This creates a new pass
called Pass 1 and will be filled, as usual, with a simple default shader. For this second
object, you will only render a teapot with a simple opaque color, as you did with the first
shader in this chapter.

The first steps are then to set up the model and stream mapping references to point to the
correct nodes. You can then edit the vertex and pixel shader code to render the new teapot.
You can use the same shader code as was used in your first shader earlier in this chapter,
so you may want to simply copy and paste the previous code onto the new shader. Select
the shader text, press Ctrl+C to copy, and press Ctrl+V to paste it into your new shader.

This seemed too easy, didn’t it? But wait, there is a problem with this setup! Both teapots
are rendered on top of each other, and you would like them to be  rendered next to each
other. RenderMonkey does not have a built-in method to set specific positions for a par-
ticular object. However, this does not stop us from being able to position your second
object. What if you create a new vector variable to be used as a position offset for your sec-
ond object?

To perform this, right-click on the Effect node, select Add Variable, pick the VECTOR
type, and name your variable teapot_position. By double-clicking this new variable, you
can set an offset value for the second teapot, the one in the second rendering pass. You
may set this variable to any value you wish, somewhere around 100 in any components,
but make sure the W component of the vector is set to zero because any other value will
interfere with the rendering of the object.

You can now edit the vertex shader code to apply this offset to the object’s position. To do
this, you must first add the variable to your vertex shader code as you did with your other
variables, and then add this variable to the incoming vertex positions defined in inPos. The
resulting vertex shader code for this follows:

float4x4 view_proj_matrix;
float4 teapot_position;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
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};

VS_OUTPUT vs_main( float4 inPos: POSITION )
{

VS_OUTPUT Out;

// Output an offset and transformed vertex position
Out.Pos = mul(view_proj_matrix, inPos+teapot_position);
return Out;

}

You are now ready to compile and display your two sets of teapots, as shown in Figure 4.8.
Once the shader is rendering, you can double-click the teapot_position variable to bring
up the variable editor dialog box. The results of any changes made to this variable are
shown in real-time in the preview window.

The final RenderMonkey shader file for this shader can also be found on the CD-ROM as
shader_3.rfx.
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Figure 4.8  Workspace and preview output for your two teapots.
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It’s Your Turn!
Here are a few exercises that involve changing the shaders you have just created. I will only
give you an indication of what you need to do and some hints to get you started, but the
creative process is up to you. You can find the solutions to theses exercises in Appendix D.

Exercise 1: ANIMATING A TEXTURE
In this exercise, you add a little animation to the last shader developed. The first part of
this exercise is to animate the texture on the first teapot from your previous shader. Take
advantage of the cos_time_0_X and sin_time_0_X built-in SCALAR variables to modify the tex-
ture coordinate inputs in your vertex shader. This type of animation may seem simple, but
it can come in handy for animating such things as water surfaces.

For the second part of this exercise, use the same cos_time_0_X and sin_time_0_X variables
in the pixel shader of the second teapot, the constant-colored one, to animate its output
color.

Exercise 2: BLENDING TWO TEXTURES
Starting with the shader just developed in the previous exercise, add the texture 
distortion.tga (found in the source code directory for this chapter) to the shader of the
textured teapot and blend them together. This involves adding a new texture variable and
setting up the pixel shader properly. To make your life simpler, reuse the same set of tex-
ture coordinates supplied for the first texture, and modulate both textures together. Mod-
ulation is done by multiplying the colors of both textures, which are in the range of
[0…1].

What’s Next?
You now have written your first shaders. Although they are basic and simple, they give you
a firsthand look at how shaders are developed in general, and show you the groundwork
needed for all shaders and effects. From this point on, I will start teaching you real shader
techniques that can be used in real applications and focus less on how the basics of Ren-
derMonkey work. The next part of this book covers screen space effects and explains how
great effects can be achieved by simply manipulating the pixels of a final rendered output.
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Now that you know how to write basic shaders, it is time to start devel-

oping some shaders based on a simple concept, which I have dubbed

screen effects. What are screen effects, you may ask? The idea is simple:

render your scene to a temporary texture, and then use a special shader to manip-

ulate the result before presenting it to the user.

Although this may sound simple and boring, such screen manipulation effects are

very powerful and advantageous for many reasons. First, because you are simply

manipulating pixels from one texture to another, such effects are easy to imple-

ment and can work in any application. Second, these effects can produce spectac-

ular results, yet have the major advantage of a constant performance cost, no

matter how complex your scene is. This is because you only have to render each

screen pixel once, which is attractive for developers doing real-time graphics.

In Chapter 5, “Looking Through a Filter,” I will explore the basics needed to 

render screen-based effects, such as rendering your scene to a temporary texture

and manipulating it through a shader. I will initially focus on color manipulation

filters and other basic filters, such as blurs and other convolution filters. In Chap-

ters 6, “Blurring Things Up,” 7,“It’s Getting Hot in Here,” and 8,“Making Your Day

Brighter,” I will explain how to accomplish more powerful effects such as depth of

field, heat haze, and high-dynamic range rendering.

Sometimes, stunning effects can be achieved through minimal work. Be prepared,

because screen space effects will be easy to develop, yet with them you can create

some of the most stunning graphics.
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Looking 
Through a Filter

chapter 5

In this chapter, I will explore both color manipulation filters and simple pixel manip-
ulation filters such as blurs. But before I can get deeper into those effects, I must
explain some basic elements needed for all screen effect rendering. First, I will show

you how you can render your scene to a temporary texture, and second, how to use this
texture and present it to the user.

Rendering to a Sketchpad
The general process used to do screen effects is simple. First of all, the scene is rendered
to a temporary texture instead of the regular screen buffer. After this has been done, the
temporary texture is processed by the filter of your choice. The result is then put into the
screen buffer to be presented to the user. So before you can even consider some of the
effects, I need to teach you how to render your scene to a temporary texture. This will also
prove valuable later, for other types of effects.

In RenderMonkey, rendering to a temporary texture can be carried out using something
called a render target. Render targets are a technique exposed by the different rendering
APIs to allow you to redirect the hardware’s rendering output to the texture of your
choice. Such textures can then be used to accomplish other effects, such as shadowing or
motion blur. Generally, this has few implications for the 3D hardware, because normal
rendering usually happens to a hidden texture that has been allocated in the background
and is presented to the user after the rendering is complete. Using render targets simply
tells the 3D hardware to redirect the output to the texture you specify.
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n o t e

Because of the nature of render targets, some hardware may impose restrictions on the size and
format of such textures. If you do not see any output for one of your render target shaders, check
your output window; it may contain error messages pointing out that you have broken such a limit.

I will start off with the basic two-teapot shader that was developed in Chapter 4, “Getting
Started, Your First Shaders,” which was modified to render both a teapot and an elephant
for variety, and expand it to render to a target texture of your choice. After you accom-
plish this, I will go through the process you can use to render your render target texture
back to your regular screen buffer. The actual process under DirectX and OpenGL may be
a little more involved, because RenderMonkey takes care of most of the details for us. Note
that the teapot shader sample you will be starting with is included as shader_1.rfx in the
source code directory for this chapter on the CD-ROM.

Start by loading the two-teapot shader developed in the “Seeing Double” section of Chap-
ter 4. I will be using this shader to show you how to use render targets and how to apply
filters to your renderings. After you open the workspace, open the Effect Group node and
the Effect node. Within the Effect node, you can add a new render target by right-clicking
on the Effect node and selecting the Add Renderable Texture option from the context
menu. This adds a new node called RenderTarget, which can be renamed if you wish.

Creating a Render Target node essentially creates a new texture
for you. However, this texture is different from regular textures
because it is not imported from a file and is managed automati-
cally by RenderMonkey. If you double-click the new Render Tar-
get node, a Render Target property dialog box appears. As you
can see in Figure 5.1, this dialog box has a few settings that can be
used to control the size and format of the render target. This is
necessary because the texture is created for you, and you will need
some control over its specifications so it can match your needs.

The first part of the dialog box in Figure 5.1 controls the width
and height of the texture. This allows you to manually specify the
dimensions for your render target. You may have noticed the Use
viewport dimensions checkbox underneath the dimensions for
the texture. This tells RenderMonkey to force the size of the ren-
der target texture to always match the size of the preview window. This is useful in cases
such as the screen effect filters you will develop in this chapter, where each pixel in your
render target should match a single pixel in your preview window to avoid losing any pre-
cision in your rendering. So make sure this option is turned on. You will generally leave
this option on except for some effects where the render target resolution does not need to
match the resolution of your render output.
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Target setting dialog box.
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n o t e

In the Render Target dialog box, you may have noticed an option called Auto-Generate Mip Map,
which is turned on by default. Unfortunately, not all hardware currently supports this feature, espe-
cially when dealing with non-square and non-power-of-two texture sizes. It is generally a good idea
to turn this feature off unless you are certain your rendering hardware supports it.

The second part of the Render Target editor is a dropdown list that allows you to pick a
texture format. Although this may be useful in some cases, for now you can leave it at the
default value, which should be set to match the format used for the preview window.
Combining the adaptive render target size and default texture format allows you to ensure
that no detail is lost when you move the pixels from your temporary texture onto your
frame buffer. This is all you need to do in this dialog box for now, so you can close it.

Now that you have a render target, you need to tell Render-
Monkey to use it. To do this, add a Render Target node to
each render pass you wish to render to this target. For this
shader, you will need to do this for both passes that render
your scene objects. To add a Render Target node, right-click
on the Pass node and select Add Render Target from the
menu. This adds a node named RenderTarget to the pass. If
you right-click on this node, a Reference Node option
appears in the menu that allows you to pick which render-
able texture to use; this allows you to use multiple render
targets within your effect if needed. After you select the
render target reference, double-click the Render Target
node you just added. This brings up the dialog box shown
in Figure 5.2.

This dialog box contains two sets of settings, which control whether the color and the
depth buffer should be cleared. The settings for the first pass render target should be to
clear the color to black and the depth buffer to 1.0, because the render target may still con-
tain previous renders or garbage. For later passes, you must ensure that the render target
settings do not clear the depth and color, because you want to keep the rendered results
from your previous passes.

n o t e

When you create a render target, RenderMonkey also creates a matching depth buffer for the tex-
ture. This allows each render target to do its own depth buffering without interfering with other
render targets.
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Figure 5.2  RenderTarget
Reference setting dialog box.
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After you set up the render target for a pass, you can repeat the same process for the sec-
ond pass. Notice that the preview window is now blank. This is because all your objects
are now being rendered to the render target, instead of to the frame buffer as before. At
this point, you can assume all is well; the next step is to set up a new rendering pass that
copies the pixels from the render target to the frame buffer.

To render your render target to the screen, you need to trick the hardware to some extent.
Because you want to use a pixel shader during the copy, you need to do the process in a
3D world, but essentially using a 2D copy. If you were to take a piece of geometry and
place it in the scene so that it fully covers the projection region generated by the camera,
you could apply the render target texture to the object and fill the screen. This is essen-
tially like draping your camera with a screen and projecting your texture onto it. The
whole process is illustrated in Figure 5.3.

For the process to work, your geometry needs to be a simple rectangle, set up so that its
coordinates match the corners of the screen in screen-space: (–1,–1,0), (1,–1,0), (–1,1,0)
and (1,1,0). Such a pre-setup piece of geometry has been supplied with RenderMonkey in
the file called ScreenAlignedQuad.3ds. Because the coordinates of the geometry are already
supplied in screen space with this model, you don’t need to apply a projection matrix to
the coordinates; you simply need to route them to the pixel shader.
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Figure 5.3  Process used in 3D to render a texture so it covers the whole screen.
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Texture Coordinates
Because you want to use the full texture, you will need to ensure that the texture 
coordinates for each corner of the rectangle geometry are as follows: (0,0), (1,0), (1,1) and
(0,1). This can be determined by using the vertex positions for the geometry, which I will
cover later.

Because you want every pixel on the screen to correspond to a single pixel in your texture,
there is one aspect of the rendering hardware that must be considered. If you take a look
at Figure 5.4, a specific coordinate when rendering to the screen corresponds to the top
left of that pixel. On the other hand, when a texture is read by the hardware, the coordi-
nates actually correspond to the center of the texture pixel. So if you were to simply ren-
der as outlined previously, the pixels would be slightly offset and would create some
unwanted filtering and aliasing.

To correct this, you need to offset the render target texture slightly so that the pixels over-
lap correctly. Figure 5.5 shows how the texture can be offset to create a correct overlap of
the screen and texture pixels. In essence, you need to offset your texture pixels by half a
pixel, which corresponds to 1/Width and 1/Height in texture coordinates.

With all the basics covered, it’s now time for me to show you how to do this texture copy
operation in RenderMonkey. First, you need to add the geometry needed for the screen
projection rectangle. Right-click on the Effect Group node and select Add Model.
Double-click the new node and select the ScreenAlignedQuad.3ds file located in the 
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Figure 5.4  How texture coordinates are accessed and how pixels are rendered.
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CD-ROM source code folder for this chapter. Then add a new render pass to your effect
group by selecting Add Pass from the right-click menu for the Effect node.

With this new Pass node created, set up the model reference to point to your
ScreenAlignedQuad model, and set up the stream mapping reference to use the common
Stream Mapping node for this workspace. The next thing is to set up a texture object that
points to your render target texture so it can be used in this pass. To do this, right-click on
the Pass node and select Add Texture Object from the context menu. Set up this texture
object by right-clicking the Texture Object node. Then select Add Texture Reference and
configure this reference to point to your renderable texture.

The next thing you need is the shader code for this pass. The vertex shader must accom-
plish two tasks. The first is to pass the vertex positions to the pixel shader. Because the
geometry you are using is already set up so that the vertex positions are in screen space,
you do not need to transform and project the position; you simply need to route it
through to the pixel shader. The second step is to set up the texture coordinates for the
geometry.

Our geometry does not have proper texture coordinates supplied with it, but this will not
stop us. Because the vertex positions in screen space are in the range (–1,–1,0) to (1,1,0), you
can simply scale and offset these values so that they match the needed texture coordinate
range of (0,0) to (1,1). This scale and offset is simply done through the following code:

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x);
Out.texCoord.y = 0.5 * (1 - Pos.y);
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Figure 5.5  How to offset the render target pixels so you get a proper overlap.
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As discussed earlier, the way pixels are read from texture and the way they are written by the
renderer do not match. To correct for this, you need to offset the texture by half a pixel. In
this case, because the width and height of the render target matches the size of the 
preview window, you can take advantage of the built-in variables viewport_inv_width and
viewport_inv_height to properly offset the texture. These built-in variables can be added to
your workspace through the right-click menu by selecting Add Variable: Scalar: Predefined
and choosing the proper built-in variable from the list. Also remember that you need to add
the variable declaration to your shader code before you can use its value. Combining the
standard scale and offset with the texture correction offset yields the following code:

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x - viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y - viewport_inv_height);

Don’t forget to add the needed variables to the shader editor before you use them in the
shader code.

When the texture coordinate code and the vertex position code are combined, you should
have the following final vertex shader code:

float4x4 view_proj_matrix;
float viewport_inv_width;
float viewport_inv_height;
struct VS_OUTPUT 
{

float4 Pos: POSITION;
float2 texCoord: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, 0, 1);

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x - viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y - viewport_inv_height);

return Out;
}
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Finally Rendering Your Render Target
It is now time to finish your effect with the pixel shader. The shader should be receiving
the proper texture coordinates, so all it needs to do at this point is to copy the texture pix-
els. To do that, sample the texture at the supplied texture coordinate and output the sam-
pled color. But remember that you need to add a sampler variable to your pixel shader
before you can do so. The resulting code for this pixel shader is as follows:

sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Simply read the temporary texture and send
// the color to the output without manipulating it
return tex2D(Texture0,  texCoord);

}

Figure 5.6 shows the resulting workspace and preview window for this effect. The com-
plete shader for this effect can be found as shader_2.rfx on the CD-ROM.

We’ll use this shader as a starting point for the following effects. Now that you understand
all the basics involved in doing full screen effects, let’s do one of the most basic effects,
color manipulation filters.
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Figure 5.6  Final workspace and preview for your basic screen
effect shader.
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Don’t Adjust Your TV!
As with any new technique you learn, it is always best to start simple and grow from there.
When it comes to screen effects, the easiest way to start is to manipulate the colors of your
texture pixels as you copy them from your render target to your screen. This may seem too
simple and naïve, but the fact is you can do many useful things, such as render in black
and white or sepia, do night vision modes, and more.

Black and White, Like in the Old Times
In the spirit of starting with something easy, how about making your renderings in black
and white? This is very simple and only requires determining the intensity of a pixel and
using that to output a grayscale color. The first step is finding out the intensity of the pixel.
A quick and intuitive way would be to say that the intensity is the average of the red, green,
and blue components of your texture, defined as: Intensity = (Red+Green+Blue)/3.

Although this will give you a grayscale value, it is not totally correct because it assumes an
equal weight for all color components. This is a flawed idea that assumes the human eye
makes out all color components equally. The reality is that your eyes see color components
differently, being most sensitive to green and least sensitive to the blues. Some researchers
have determined estimated weights for the color perception of the human eye and have
determined that intensity is determined as: Intensity = 0.299*Red + 0.587*Green +
0.184*Blue.

Starting with the template shader developed in the previous section, which can be loaded
from the CD-ROM as shader_1.rfx, you can modify the pixel shader of the render target
copy pass to simply take in the incoming texture pixel and modify it to use this equation.
With this simple adjustment, you should have the following pixel shader code:

sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read the source color
float4 col = tex2D(Texture0,  texCoord);
float Intensity;

// Make it B&W, intensity defines as being
// I = 0.299*R + 0.587*G + 0.184*B
Intensity = 0.299*col.r + 0.587*col.g + 0.184*col.r;

// Note, can also be done as a dot product such as
// Intensity = dot(col,float4(0.299,0.587,0.184,0));
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// Return the intensity as a uniform RGB color
return float4(Intensity.xxx,col.a);

}

As you can see in the code, I use two techniques for computing the intensity. The first is
the obvious one, where you simply apply the intensity equation with the proper weights.
The second one performs the same task, but with the use of a dot product. This still works,
because the dot product can be expanded into the same equation as shown in Figure 5.7.

The use of the dot product has two major advantages. The first is that most pixel shader
architectures have native dot product instructions that are more efficient than perform-
ing the full equation operation manually. The second advantage, which you will exploit in
the following section, is that a dot product is a sub-operation of a matrix multiplication,
allowing us to generalize the color manipulation process to a simple matrix operation.

The result of this shader is shown in Figure 5.8. This complete shader can also be found
on the CD-ROM as shader_3.rfx.
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Figure 5.7  Expanding a dot product operation to its final equation.

Figure 5.8  Your black and white shader
in action.
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In the first exercise in the “It’s Your Turn” section at the end of this chapter, you will be
invited to implement a variation of this black and white shader called Sepia.

n o t e

Because all the figures within this book are in black and white and may not always show an effect
at its best, I have included all the figures on the CD-ROM in high-resolution color. Refer to Appen-
dix C for more information on how to access the high-resolution illustrations.

Generalizations Are Good!
It is always nice when you can take a specific effect and generalize it so that it can be used
in many different ways. What if you can take the color manipulation approach shown in
the previous section and generalize it so any basic color manipulation effect can be
expressed with the same shader? In this section, I will go back to your black and white
shader and show you how you can modify it and express any color manipulation through
a simple yet reusable shader.

Previously, I showed how the grayscale conversion can be expressed with a dot product. I
pointed out that a dot product can be seen as a sub-operation of a matrix operation. In
fact, if you take a matrix multiplication between a matrix and a vector, the operation can
be decomposed into a set of dot product operations applied to each row of the matrix.
This decomposition is explained in more detail in Figure 5.9.
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Figure 5.9  Decomposition of a matrix multiplication into a set of dot product operations.
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With your previous grayscale shader example, the
red, green, and blue components end up with the
same values but can still be represented by a sim-
ple matrix operation, as shown in Figure 5.10.

With this in mind, it is now time to generalize
your color manipulation shader by taking advan-
tage of a color conversion matrix. The first step is
to add a new matrix variable to your Effect
Group node by right-clicking on it and selecting
Add Variable from the menu. Pick a MATRIX type
variable, name it color_filter, and edit it by fill-
ing the values to the ones needed for your grayscale shader as defined in Figure 5.10.

The last step is to change your pixel shader to do the matrix operation. This is simply
accomplished by adding the color_filter variable to your shader code and multiplying the
incoming color with your color transform matrix. Following is the final pixel shader code
implementing your generalized color manipulation shader:

float4x4 color_filter;
sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read the source color
float4 col = tex2D(Texture0,  texCoord);

// Apply the matrix to the incoming color
return mul(color_filter,col);

}

The completed shader is available on the CD-ROM as shader_4.rfx.

Now that you have generalized the color manipulation shader, let’s look at another exam-
ple of how to use it. Let’s say you wish to simulate thermal vision, as shown in movies such
as Predator. In such a mode, blue represents low heat, green represents mid-level heat, and
red is for maximum heat. If you assume that heat is based on the color intensity of your
initial render target pixel, you can compose a matrix that approximates this effect.

Based on my description, you could come to the conclusion that the final color should be
defined as something similar to the following, keeping in mind that the numbers below
come from experimentation:

Color.r = 0.1495*RT.r + 0.2935*RT.g + 0.057*RT.b + 0.5;
Color.g = 0.1495*RT.r + 0.2935*RT.g + 0.057*RT.b + 0.25;
Color.b = 0.1495*RT.r + 0.2935*RT.g + 0.057*RT.b;
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Figure 5.10  Our grayscale conversion
represented as a matrix operation.
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After you define the matrix, you can simply edit the
values by double-clicking the color matrix and
inputting them. After you put in the values, you can
see the results right away in the Preview Window, as
shown in Figure 5.11. This completed shader can be
found as shader_5.rfx on the CD-ROM.

You may notice that this shader does not resemble
thermal imaging on television. This is because the
actual color scale used isn’t linear and cannot be rep-
resented by a simple matrix transformation. In the
next section, I will outline a texture lookup technique
that can be used in cases where color conversions can-
not be represented by simple linear equations.

To conclude this section, let me introduce you to a few
other common color manipulation matrices that can be
used for standard things such as negative image, con-
trast control, and mode. Figure 5.12 summarizes those
matrices, along with their coefficients and functions.

Things Are Not Always Linear
As you saw in the previous section, your thermal imag-
ing shader didn’t look very convincing. This is because
the color scale generally used isn’t linear and cannot be
represented by a simple matrix transformation. You
could always try to come up with a set of equations
that look better, but one thing to think about when it
comes to pixel shaders is that complex equations can
turn a simple shader into an expensive one quickly. At
this point, I’ll introduce lookup textures because they
can be a great way to optimize shaders.

Although I will not develop a shader now, this subject
is worth approaching because it will be used many
times throughout the following chapters.

The basic idea behind the approach is simple. Because your function is known and con-
stant, what if you precomputed it into a texture and used the texture as a lookup table to
get your result instead of computing it directly? This has an advantage because you only
need to calculate the equation once to build the lookup texture, and then you only pay the
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Figure 5.11  Rendering output for
your thermal imaging shader.

Figure 5.12  Miscellaneous color matrices
used for standard operation.
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processing cost of looking up a texture instead of the full equation for each pixel. This can
be much more efficient if your color conversion equation is complex.

In the case of your thermal imaging example, you could use an image editing program to
create a one-dimensional texture that represents the output color based on the heat, or
intensity, of your render target. The color conversion operation simply becomes a depen-
dent texture read.

Our previous pixel shader, adapted to use a lookup texture, would be the following:

float4x4 color_filter;
sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read the source color
float4 col = tex2D(Texture0,  texCoord);
float Intensity;

// Compute the intensity or heat of the pixel
// In other words, compute the grayscale value of
// the pixel.
Intensity = dot(col,float4(0.299,0.587,0.184,0));

// Use the intensity to lookup the heat color table
return tex1D(Texture_Heat,Intensity);

}

Dependent texture lookups are a very powerful technique. Keep this approach in mind; it
will come in handy in future chapters. This will be all for color manipulation for now. It
is time to move on to more complex pixel manipulation shaders.

Blurring Things Up
The first question you may ask is, why do I need to blur my render target? You are right
to ask; blurring the render target on its own serves little purpose. However, this serves as
a good introduction to pixel manipulation and convolution filters. I also will be using the
blurring technique in the next chapter to introduce the depth of field effect.

There are many types of filters, or filter kernels, which can be used to blur a texture. We’ll
start with what is commonly known as the box filter. In a box filter, as shown in Figure
5.13, a pixel becomes the average of its four neighboring pixels: up, down, left, and right.
Within a shader, this can easily be carried out by sampling your render target four times
and averaging the values together.

Chapter 5   ■ Looking Through a Filter80

TEAM LinG - Live, Informative, Non-cost and Genuine !



Although this approach can be written in a sim-
ple expanded form where you take all your sam-
ples individually, I will take advantage of the
power of the pixel shader 2.0 standard to write
this filter in a more generic and reusable way.
Because the pixel shader 2.0 standard allows us to
use loop statements, I will write the shader using
the added functionality.

Such blurring and convolution filters require you
to sample your texture multiple times. Each sam-
ple is at some offset from the current position
and has some weight applied to it. Because of
this, you can store the offsets and weight into a
constant array within the shader. For example,
the following table shows how the four samples
for your box filter can be represented in an array:

const float4 samples[4] = {
-1.0, 0.0,     0, 0.25,
1.0, 0.0,     0, 0.25,
0.0, .0, 0, 0.25,
0.0 -1.0, 0, 0.25 

};

With this representation, you can take advantage of a loop statement that iterates through
all the elements of your array to compute the shader. For each iteration of the loop, you
must sample the texture at the desired offset, weigh the result by the correct factor, and
add the final value to an accumulation variable, repeating the process for every sample in
your filter. Implementing such a technique yields the following code:

// Sample and output the box averaged colors
for(int i=0;i<4;i++)

col += samples[i].w*tex2D(Texture0,texCoord+
float2(samples[i].x*viewport_inv_width,

samples[i].y*viewport_inv_height));

Now that you have all the components, putting this box filter blur shader together is sim-
ple. Starting with the basic pixel manipulation shader developed at the beginning of this
chapter, you simply need to modify the pixel shader code of the manipulation pass to

Blurring Things Up 81

Figure 5.13  Illustration of how a box
filter is implemented.
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incorporate the pixel shader code that was just developed. When the changes are imple-
mented, the final pixel shader code should look as follows:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0;
const float4 samples[4] = {

-1.0, 0.0, 0, 0.25,
1.0, 0.0, 0, 0.25,
0.0, 1.0, 0, 0.25,
0.0, -1.0, 0, 0.25

};

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col = float4(0,0,0,0);

// Sample and output the box averaged colors
for(int i=0;i<4;i++)

col += samples[i].w*tex2D(Texture0,texCoord+
float2(samples[i].x*viewport_inv_width,

samples[i].x*viewport_inv_height));

return col;
}

When the code is compiled, your preview window
should show you a blurred version of your scene, as
shown in Figure 5.14. You may notice that the blurring
might not be as extreme as expected. This is because a
box filter only performs its operation by looking at its
immediate neighboring pixels. You can also find the
complete version of this shader on the CD-ROM as
shader_6.rfx.

To blur the image more, two approaches can be taken.
In the first approach, you can simply repeat the same
blur process several times, using your previously
blurred result as input for the next pass. This iterative
approach is advantageous because it can be applied as
many times as needed, but occasionally can lead to aliasing depending on your input. The
second approach is to use a more complex filter kernel, which can lead to better result but
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Figure 5.14  Render output for a
box filter blurring shader.
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is generally more expensive. You will have a chance to implement such a kernel in Exer-
cise 2 at the end of this chapter.

Bring on the Filters
Blurring is probably one of the simplest forms of convolution filter that can be imple-
mented. There are many more type of filters that can be implemented through the same
techniques. With these filters, you can implement such things as edge detection and image
sharpening.

An edge detection filter highlights the edges of an image. The edges are defined as sharp
color transitions between pixels. An edge detection filter serves little purpose in most
applications beyond teaching you about different filters but will come in handy later on
when you’re rendering silhouettes. An image sharpening filter, on the other hand, can
enhance the contrast on sharp color transitions within an image. This filter may be useful
to improve the sharpness of your final renderings.

Both filters are implemented with the same approach used in the box blur filter. Figure
5.15 describes the actual filter kernels for both edge detection and image sharpening that
you will implement in this section.

For both filters, you need to start with
the blur filter you previously built.
Because the approach taken was to use
an array of filter components and a loop
to sample the textures, all you need to
change is the array for it to match the
kernel. Looking at the kernel for the
edge detection filter in Figure 5.15, you
can extract the coefficients and offsets
and put them in the array. This gives you
the following:

const float4 samples[6] = {
-1.0, 1.0, 0, 1.0,
0.0, 1.0, 0, 2.0,
1.0, 1.0, 0, 1.0,
-1.0, -1.0, 0, -1.0,
0.0, -1.0, 0, -2.0,
1.0, -1.0, 0, -1.0

};
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and image sharpening.
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With this new array, you need to adjust the loop to do the right number of iterations. You
can do the same process with the image sharpening filter. Extracting the filter kernel coef-
ficients from Figure 5.15, you end up with the following array:

const float4 samples[5] = {
0.0, 0.0, 0, 11.0/3.0,
0.0, 1.0, 0, -2.0/3.0,
0.0, -1.0, 0, -2.0/3.0,
-1.0, 0.0, 0, -2.0/3.0,
1.0, 0.0, 0, -2.0/3.0

};

Figure 5.16 shows the rendering output for both shaders. As you can see, setting up con-
volution filters by taking advantage of the pixel shader 2.0 instructions proves a great way
to make your shader code flexible and reusable. You can find a complete version of both
filters on the CD-ROM under shader_6a.rfx and shader_6b.rfx.

Motion Blur
Most of the effects covered in this chapter have little value on their own, but serve as a
framework for later effect. Because of this, we will develop a simple screen effect in this
chapter that could prove useful. Following is a simple screen effect that can estimate the
motion blur effect seen in real-life video.

Have you ever moved your hand in front of your eyes rapidly from left to right? If you do
so, you’ll notice that you cannot see your hand clearly and it appears mostly as a big blur.
The same phenomenon also happens with photo and video cameras. This happens
because the human eye and cameras do not take in information at an infinite rate but take
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Figure 5.16  Rendering output for both the edge detection and image
sharpening filters in action.
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snapshots of what they see many times per second. If an object is moving faster than the
rate at which images are captured, it will appear to streak across the image.

Knowing how the effect happens in real life can tell us to implement it in our rendering
environment. The ideal approach is to determine the movement speed of each pixel in the
scene from one frame to another, and use this information to blur the image correctly.
This approach is feasible but too complicated at this point in this book. Another approach
would be to ignore the speed of movement and take the pixels from the previous frame
and blend them with the pixels of the current frame. This approach is a gross estimation
because it does not account for actual speed but has been taken in many of today’s video
games and is the approach I will take in this chapter.

t i p

A motion blur screen effect can serve one of two purposes. The first is the obvious: a simple emu-
lation of the real-life motion blur effect. The second is that when the effect is applied slightly to a
scene, it can cancel out aliasing effects that can occur in your rendering, effectively serving as an
inexpensive alternative when you do not have hardware antialiasing.

My approach may seem like a crude approximation of the real effect, and you may think
it would not function. A common misconception in computer graphics is that unless you
do it the exact way it appears in real life, it can’t look good. As you read this book, you will
learn that the essence of computer graphics is not how exactly you do something, but how
convincing it is to the human eye. Human vision is a very subjective thing and does not
perceive everything equally, just as you can’t assume the intensity of a color is the simple
average of all its components.

Before you can write a motion blur shader, you should understand the process of how the
effect happens using RenderMonkey. In essence, you will need to render your scene to a
render target and then blend the current result with the previous output from the previ-
ous frame. Figure 5.17 pictures the process in a clearer way. Looking at the diagram, you
can see that the whole motion blur process is simply a recursive loop, where the result
from the previous frame is used to render the next frame.
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Building the Motion Blur Shader
With the information you have so far, it is easy to implement a motion blur effect, start-
ing from your template shader developed at the beginning of this chapter. This shader
already takes care of rendering your scene to a render target and gives you a rendering pass
to copy a render target to the screen. Based on the diagram in Figure 5.17, the only thing
missing is a pass that takes care of blending the result from the previous frame with the
current result. To do this, you need to add another Pass node to your effect. You will notice
this new pass is added at the end of the effect, but you will need it right before the final
pass. To do this, right-click on the new Pass node and select Move Up from the menu. The
reason you need to “Move Up” the new pass you have just added is that RenderMonkey
actually renders them sequentially in the order they are presented within the workspace.
Since your new pass needs to be rendered before the final “Present” pass, it needs to be
placed before it in the workspace.

Another thing you will need to add to your effect is a new render target. You may not have
thought about it, but because you need to keep the previous frame’s render result, you will
need a new render target to keep track of this. So add the new render target to the effect
by using the right-click menu on the Effect node and renaming it RenterTarget2.

At this point, the objects from the scene are being rendered to RenderTarget, and you have
your blending pass almost ready. Because you will be blending the two render targets
together, it will be worth adding a variable to the effect to control how the two textures
will be combined. Add a VECTOR variable to your effect, name it blend_factor, and set its
value to 0.5. Because the blending pass essentially blends two render targets into one, the
basic task is essentially the same as the regular render target copy pass. So to start, copy
the vertex and pixel shader code from the regular copy pass onto your blending pass,
which is the new rendering pass you just created.

Another thing is needed for this to work. Because you will need the results of the rendering
for your next frame, this blending pass needs to output its result to RenderTarget2 so you can
reuse it next frame. To do this, add a Render Target Reference node to the blending pass and
point it to RenderTarget2.

With this basic setup, the vertex shader already does all it needs to do; the only changes
needed are to the pixel shader. The two basic setup items needed are to add the second
render target sampler and the blend_factor. Add those to the pixel shader as you have done
for other shaders before. Remember that you will also need to copy your model and tex-
ture references from your regular copy pass to the new blending pass, so that it can 
render the proper geometry and texture.

The current pixel shader code simply samples the first texture and outputs it to Blur1. But
now you want to blend two textures together. For this effect, you can simply sample both
textures using the same texture coordinates, and interpolate between the two values based
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on the blend factor variable. With HLSL, this can easily be done by using the lerp func-
tion, which will perform a simple linear interpolation between two values. The pixel
shader code that interpolates the two render targets is as follows:

float4 blur_factor;
sampler Texture0;
sampler Texture1;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col1 = tex2D(Texture0, texCoord);
float4 col2 = tex2D(Texture1, texCoord);

// Interpolate in-between the two render targets
return lerp(col1,col2,blur_factor);

}

This almost does it; the only thing that needs to be changed is your final copy pass. This
pass still copies the first render target to the screen. This needs to be changed so that it
uses the result contained in RenderTarget2. Compile the effect, and there you have it! If you
move your objects around, you will see a trail left behind by the effect, as shown in Figure
5.18. You can also play around with the blur_factor variable to control the amount of blur
that occurs. This shader can be found as shader_8.rfx on the CD-ROM.
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Figure 5.18  Workspace and preview window for your motion blur effect.
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It’s Your Turn!
There was much content in this chapter for you to understand. Most of it is simple, but it
will serve as a foundation for the next few chapters. The following exercises will allow you
to explore those screen effects a little further, and explore your own creativity as well. You
can find the solutions to these exercises in Appendix D.

Exercise 1: OLD TIME MOVIE
This first exercise is simple because you will be using the generalized color manipulation
shader to implement a Sepia shader. Sepia is a color mode that emulates old-time western
pictures. In that time of early photography, pigments used in film prevented photography
from reproducing correct black and white. In fact, pictures had more of a brownish tint. To
reproduce this effect, you will need to determine the grayscale color intensity as with black
and white, but apply a tint to the resulting image. To apply the tint, you simply need to add
to the color generated by the grayscale conversion. The tint to apply for Sepia rendering is:
Red=80/255, Green=43/255 and Blue=–23/255.

Your real task is to discover how this tint can be integrated into the color conversion
matrix. Look at Figure 5.9 to determine how the tint can be applied to the matrix.

Exercise 2: GAUSS FILTER
In this chapter, you have learned how to implement a simple box filter. There are many
other forms of filters that can be used to blur an image. The most popular one is the Gauss
filter. This filter requires reading many more pixels along a 7 × 7 grid, which would require
many samplings of a texture. However, to your advantage, this filter is separatable. This
means the whole filter can be broken down into distinct horizontal and vertical passes.

For this exercise, you will need to expand the box filter shader to implement a Gauss fil-
ter. You will need to add an extra pass to the shader so you can filter both horizontally and
vertically. The weight coefficients used for the Gauss filter are: 1/64, 6/64, 15/64, 20/64,
15/64, 6/64 and 1/64.

What’s Next?
As you have seen in this chapter, screen-based filters are easy to set up and use. At this
point, you may wonder about the usefulness of such filters. This chapter was a basic intro-
duction, showing simple filters so you can get a handle on the basic principles before you
tackle more complex effects. On their own, most of the simple effects demonstrated in this
chapter have little value, but they do serve as basic components in the effects developed in
the following chapters.

In the next chapter, you’ll be introduced to your first real-life usable effect. The effect is
called depth of field and can simulate the in- and out-of-focus properties that the human
eye and video cameras perceive. This new effect takes advantage of the blurring filters I
have developed in this chapter to re-create an out-of-focus version of your scene.
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Blurring Things Up

chapter 6

One important aspect of computer graphics is rendering scenes that look perfect
and flawless. This is because of the approaches taken and the precision of the ren-
dering hardware. Of course, this is dependent on the extent of the geometric and

texture precision put in them. Although this may be a valuable asset in some fields, such as
medical imaging or architecture, it poses some problems in the fields of video games and
movie CG. Those perfect-looking graphics lack the usual artifacts and phenomena per-
ceived by either the human eye or a camera, making the graphics look synthetic.

Graphics developers strive to artificially reintroduce those artifacts by using clever ren-
dering techniques. The hope behind this is to re-create visual cues, which appear naturally
in photography but are lacking in computer graphics, thus creating a more immersive and
realistic environment for the viewer.

In the art of video game making, developers have put time and effort into reproducing
those effects. For example, many games feature lens flares, which are artifacts seen with
video cameras when bright light is reflected internally by the lens. This effect, although
simplistic, was one of the first steps taken toward artificially re-creating the photography
effects observed in real life. With the introduction of flexible vertex and pixel shaders,
more and more of those effects can now be re-created, giving even more immersive rich-
ness to your renderings.

In this chapter, you will learn about a common effect observed with the human eye and
through photography called depth of field. I will explain how the effect occurs naturally so
you can have a better understanding of its behavior. Then I will focus on a few possible
implementations of such an effect that can be achieved with today’s hardware through the
use of shaders, and conclude with considerations for future implementations on upcom-
ing hardware.
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What Is Depth of Field?
Depth of field, or DOF, is an effect that occurs naturally in the human eye and in photo-
graphic equipment. The first thing worth considering is what DOF actually is and how it
occurs. Take a look at the picture in Figure 6.1.

As you can see in the image, the elements closest and farthest from the camera appear
blurred. I am sure you have noticed this in- and out-of-focus effect before. For another
example, stare into the distance and hold your finger close to your eye; it will also be fuzzy
and blurred out. You may ask yourself how this happens. The reason behind the effect can
be described easily when you understand a little more about how your eye or a camera
captures an image.

In Figure 6.2, you can see a basic setup for a camera with a subject, a lens, and a receiver.
The principle described here works with the human eye as well, because cameras were 
created based on the same principle.

If you look closely at Figure 6.2, the first thing you’ll notice is that the camera captures the
image of the object by capturing the light that is reflected off the object. This light bounces
off the object in all directions and eventually reaches the camera’s lens. The purpose of the
lens is to control the zoom of the object, while ensuring that the light coming straight into
the camera lens converges towards the aperture. The aperture serves as a small entrance
that controls the amount of light making it to the receiver. The receiver—the cornea, film,
or CCD—receives the energy from the light and converts it into colors. (CCD means
charge-coupled device.)
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In theory, if the aperture was infinitely small, only the light that perfectly converged
through the aperture would make it to the receiver, and the image would be crisp for all
distances. However, in such cases, this also means that very little light energy would make
it to the receiver. Most cameras do not have an infinitely small aperture because more light
is needed to capture a picture.

This has the side effect of allowing some of the light that is not converging perfectly at the
center of the aperture to make it through to the receiver. This excess light then makes it to
the receiver and causes unwanted blurring and distortions. You may wonder why such
nonconverging light occurs in the first place. Figure 6.3 should shed more “light” on the
subject.
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Figure 6.2  Diagram explaining how a camera captures an image.

Figure 6.3  Light divergence example for an object close to the camera.
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If you look at the object located close to the camera, you will notice something strange.
Some of the light that is bouncing off the object, but not heading directly at the camera,
can enter the lens. The lens is designed to refract the light rays heading in a perpendicular
direction to it, so that they converge at the aperture. However, with the object closer to the
lens, a non-perpendicular ray actually makes it to the lens. This ray of light is refracted like
any other, but because of its direction, it does not converge exactly at the center of the aper-
ture. If the aperture were really small, the light would be blocked, but in this case it is not.

Because this one intrusive ray made it, millions of others will also make it, causing the
object close to the camera to appear blurred and out of focus. This is because light com-
ing from incorrect directions will also contribute to the image, although this light isn’t
focused properly. I will not go into the details, but a similar phenomenon also occurs for
objects far away from the camera.

Because of this flaw in our eyes and cameras, depending on the lens setup and aperture
size, there is a region where most rays received will be straight and the image will appear
crisp. However, going outside the region leads to an image that is progressively more
blurred and distorted. Depth of field, or DOF, refers to the in-focus region. There are
many ways to evaluate the focal distances used for DOF. Figure 6.4 outlines an equation
that can be used to evaluate the DOF distances for various cameras.

n o t e

The DOF equation given in Figure 6.4 is for reference. Throughout this chapter, I will not use these
equations but will use arbitrary values that work well for our specific shader. You may, however,
want to use these equations to represent this effect more accurately in more complex scenes.
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With this basic understanding of how the DOF effect happens within our optical devices,
you can start exploring different approaches. The following section will explain how the
depth of field can be faked and different techniques that can be used to do so.

It’s All About Faking It!
Now that you know how depth of field occurs in real life, it is time to consider the impor-
tant part: how you can re-create this effect in your 3D environment through the use of
shaders. Generally, with such effects you want to create something convincing to the
viewer. You should keep in mind when developing effects, however, that re-creating an
effect following the equations and theory isn’t always the best. Sometimes the cost of
doing an effect perfectly is too prohibitive. Other times, an effect is too subtle and needs
to be exaggerated so it can catch the viewer’s eye.

Because of this, I will not focus on the exact physics behind the depth of field phenome-
non, because they would be too expensive to do in real-time. Instead I will focus on 
creating an approximation that is well suited for use on the current 3D hardware and 
that looks convincing enough. This is essentially why this section is called “It’s All About
Faking It.”

Based on the explanation in the preceding section, notice that the DOF effect has two
major components. The first part to consider is that objects inside a specific depth range
are in focus; the rest are out of focus. You will need techniques with which to discover or
use the depth of your pixels to determine whether a pixel is in DOF range.

The second component is the blurring of out-of-focus regions. Blurring was covered in
Chapter 5, “Looking Through a Filter,” and in this chapter, you’ll be able to take advantage
of what you learned there.

Reproducing the DOF effect is simple. First of all, you need to render the scene to a ren-
der target in the same way you did in Chapter 5. This render then needs to be blurred so
you can use it later. Following this, as usual, you need to copy this render target to the
screen buffer. For every pixel you copy, you need to know its depth and find out if it is in
focus or not. Based on this determination, you will either copy the blurred or nonblurred
version of your render target to the screen buffer. Although this is a simple process, simi-
lar to the ones shown in the previous chapters, here I will cover different approaches that
can be taken to implement DOF.

First, we’ll take a closer, more detailed look at blurring, which is common to all techniques.

n o t e

Keep in mind that there can be many more approaches to doing DOF than those presented in this
chapter. I will cover only the most common approaches that work well on today’s hardware, and
present some ideas to keep in mind with regards to tomorrow’s 3D hardware.
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Blurring Things, Take Two
Because the depth of field effect requires you to combine your render target with a blurred
version of the same image, it is worth revisiting the blurring techniques discussed in
Chapter 5: the box filter and the Gauss filter.

In Figure 6.1, notice that the objects close to the camera are significantly blurred. The box
and Gauss filters do not blur that much. Here you will learn how to expand your filters so
they perform better for the needs of the DOF effect.

Two basic approaches can be taken to increase the blurring. The first one is to go for a
more complex filter with more samples. This creates a smoother blur, but it can be signif-
icantly expensive.

The second approach is to do a simpler and less expensive blur, but to repeat the process
several times iteratively. I will take this approach throughout this chapter because it has
an added benefit. Because you are applying your filter progressively, you can keep inter-
mediate versions of your blur. This will be useful for the depth of field effect, because you
can use the intermediate blurs to create a smoother transition from the in-focus to the
out-of-focus regions.

Because the box filter is too simple and the Gauss filter needs two passes, we’ll try a new
blur filter kernel that will do better than a box filter, but will be simple enough to fit in a
single pass so it can be repeated several times.

This new filter kernel is essentially a simple 9-samples filter kernel.
This filter is simpler than the regular Gauss filter and can be per-
formed in a single pass. As you can see in Figure 6.5, this filter is
essentially the expanded form of a 3-by-3 Gauss filter.

In Figure 6.5, notice that this filter only considers a single neigh-
bor pixel, leading to minimal blurring. By using multiple itera-
tions of this simple shader, however, you will have more control
over the final amount of blurring you wish to apply. Implement-
ing this shader can be done using the same approach used in the
previous chapter. You can do this filter as an array of filter posi-
tions and weights, which yields the following source code:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0; 
const float4 samples[9] = {

-1.0, -1.0, 0, 1.0/16.0,
-1.0, 1.0, 0, 1.0/16.0,
1.0, -1.0, 0, 1.0/16.0,
1.0, 1.0, 0, 1.0/16.0,
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-1.0, 0.0, 0, 2.0/16.0,
1.0, 0.0, 0, 2.0/16.0,
0.0, -1.0, 0, 2.0/16.0,
0.0, 1.0, 0, 2.0/16.0,
0.0, 0.0, 0, 4.0/16.0

};

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col = float4(0,0,0,0);

// Sample and output the averaged colors
for(int i=0;i<9;i++)

col += samples[i].w*tex2D(Texture0,texCoord+
float2(samples[i].x*viewport_inv_width,

samples[i].y*viewport_inv_height));
return col;

}

This shader can be found as shader_1.rfx in the CD-ROM source code directory for this
chapter.

One variable that still needs to be determined is how much blurring is enough. For this, I
have developed a multi-pass version of this shader in which you can control the number
of iterations by enabling and disabling render passes. This shader was developed by com-
bining three simple blur iterations with a final Gauss blurring filter. For your convenience
and experimentation, I have included this shader as shader_2.rfx on the CD-ROM.

The results for your experiment are shown in Figure 6.6. If you compare Figure 6.6 with
Figure 6.1, the 3 iterations with Gauss filter would be enough to achieve a similar level of
fuzziness and should be sufficient for the depth of field effect.

This covers one of the two aspects of the depth of field effect. Throughout the rest of this
chapter, you will use the 3 iteration with Gauss blurring filter as your basic implementa-
tion. For your convenience, I have built a shader that contains the template scene I will be
using with the blurring filter. This shader is included as shader_3.rfx on the CD-ROM.

n o t e

By now, you should have noticed the use of a second renderable texture named Blur2 within the
previous shader. The reason behind the second texture is that if you want to iterate through multi-
ple filters, you will end up rendering to the same texture that you are using as a source, which can
lead to rendering glitches. The way to avoid this is to alternate between two or more renderable
textures.
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Depth Impostors
Under ideal circumstances, you do your depth of field effect by determining a blurring
factor for each pixel based on its 3D depth. Such implementation can be expensive, com-
plicated, and even impossible on some hardware implementations, because you may not
be able to access the depth information back from the hardware for use in your shader.
Because of this, you need a technique that can work on virtually any available hardware
and configuration.

In this section, you will learn a technique called depth impostors, which allows you to
implement DOF without having to manually consider the depth of each pixel. The
approach is simple; instead of determining the blurring factor for the depth of each pixel,
you can render a full-screen polygon within your scene at an appropriate depth for the
near and far focus regions. The polygon serves as an impostor, rendering the blurred ver-
sion of the scene at the appropriate depth. The approach is the same as that of copying a
renderable texture to the screen, with the exception that the geometry has a depth value
set so that it interacts with the existing scene. Figure 6.7 illustrates the whole process.

Starting with the template from shader_3.rfx, you will need to add many variables. The
first two variables to add to the Effect node are two scalar values named Near_Dist and
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Far_Dist. Those variables are used to contain the depth at which the near and far out-of-
focus regions start. To start, set the Near_Dist variable to 0.4 and Far_Dist to 0.75.

You will also need a Camera node. This allows you to control the camera more precisely
and set parameters, such as the far and near clipping planes. To create a Camera node,
right-click on your Effect node and select Add Camera from the context menu. Because
you can add multiple cameras to an effect, you will need to select the active one by pick-
ing Set Active Camera from the Camera node’s right-click menu.

n o t e

Placing manual cameras in the scene allows you to finely control its parameters, such as field of
view and far and near clip planes. Cameras also enable you to render a scene from multiple per-
spectives as needed. Keep in mind that when you do not create a manual camera, a default cam-
era is created for you, but it will not appear within your workspace.

Camera nodes will come in handy later on in this book.

When a scene is rendered, each pass needs to know which camera it must use. In our pre-
vious shaders, there was only one camera, the default one. Now, because you have created
a manual camera, every pass that requires a projection matrix needs a Camera Reference
node telling it which camera to use. In your shader, you need to add this reference node
to all of the object-rendering passes. To do this, right-click on the Pass node and select
Add Camera Reference. As with other reference nodes, you also need to select which cam-
era to use with the right-click menu.
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Before you can take on the rendering of the impostors, you need to make a minor adjust-
ment to the pass nodes for both models. In this shader, I will be using W-Buffering instead
of Z-Buffering. I will explain why in the next section, but for now, simply add a Render
State node to both model rendering passes and change the ZENABLE state to USEW.

You now have a scene that will render your two models to a render target named 
RenderTarget, blur this render target using the textures named Blur and Blur2, and present
RenderTarget to the user. You have all you need to create your actual impostors. The impos-
tors will be rendered using the same trick you used to do all your render target copies in
the past. The vertex shader code that handles the vertex position looks like this:

Out.Pos = float4(Pos.xy, 0, 1);

Notice that the z component of the position has been set to zero. This essentially means
the geometry will be rendered right in front of the camera. Using a z value other than zero,
you can control where your impostor will be rendered depth-wise but still guarantee that
the polygon will cover the full screen. Changing this code to use the far and near distance
variables yields the following:

// Set the position of the impostor so that it covers the screen.
// The Z value is set to either Far_Dist or Near_Dist and the W
// component is set to one so that no perspective occurs on the 
// geometry.
Out.Pos = float4(Pos.xy, Far_Dist, 1);
// Or for the near plane.
Out.Pos = float4(Pos.xy, Near_Dist, 1);

Rendering depth impostors is simply a matter of reusing your standard render target copy
pass and modifying its vertex shader code to use the proper depth, instead of forcing it to
the front of the camera. Copy two passes from the blurring process by using the right-click
menu Copy and Paste options, and rename them Impostor_Near and Impostor_Far. These
passes simply apply a full-screen rendering of a renderable texture while blurring the end
result, which is almost what you need to render a depth impostor. You will also need to
move those passes so they are located between the last blurring pass and the present pass
node. You can move them up using the Move Up option from the right-click menu.

Let’s start by looking at the Impostor_Far pass. The first thing you need to do is add a 
Render State node and change its Z-Buffering settings. Because you will want the far
impostor to render only when something is located behind it, the impostor must be drawn
if its depth is less than what is in the Z-Buffer. You then need to enable Z-Buffering by 
setting ZENABLE to USEW and setting the ZFUNC to LESSEQUAL. You also need to make sure the
impostors do not modify the depth buffer by setting the ZWRITEENABLE render state to FALSE;
this is to avoid having the impostor overwrite the depth values from your scene.
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The second thing to do with this render pass is to ensure that the texture references are set
up properly. You need to make sure the render target reference points to RenderTarget and
the texture object points to the Blur texture. With these settings, all that is left to config-
ure is the shader code for this pass.

The vertex shader code is essentially the same as the blur pass from which you copied your
shader, with two exceptions. The first is the vertex shader change I discussed a few para-
graphs ago, which leads to the following vertex shader code:

float4x4 view_proj_matrix: register(c0);
float Near_Dist;
float viewport_inv_width;
float viewport_inv_height; 
struct VS_OUTPUT 
{

float4 Pos: POSITION;
float2 texCoord: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, Far_Dist, 1);

// Texture coordinates are set up so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x +viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y +viewport_inv_height);

return Out;
}

The second change is to the pixel shader. Because this pass isn’t combining multiple sam-
ples from a texture, it can be changed to a simple “read and output” form, which gives the
following pixel shader code:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

return tex2D(Texture0,texCoord);
}
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With the Impostor_Far pass setup, creating the Impostor_Near pass is a matter of applying the
same steps I just covered and substituting Far_Dist in the vertex shader with Near_Dist. The
other change needed is to change your Render State Block so that ZFUNC is set to
GREATERQUAL, allowing the portion in front of the impostor to be blurred.

Figure 6.8 shows the final workspace and preview window for the rendered effect. Play
around with the camera, and you will see the scene objects going in and out of focus as
you change their depth.

This shader can be found on the CD-ROM’s source code folder as shader_4.rfx.

As you can see, this approach is simple to implement and can be used on most of today’s
hardware. It does suffer from one major drawback, though. Because you use a simple
polygon placed at the proper depth, you can see a distinct separation between the in-focus
the out-of-focus regions.

One way to improve on this is to blend in multiple far and near focus polygons with dif-
ferent levels of blending. This would create a more progressive transition to the effect. I
invite you to carry out this extension in the first exercise at the end of this chapter. Other
approaches that improve the in- and out-of-focus transitions involve finding out the
depth and blurring per-pixel. I will be covering a few of these techniques in the following
sections.
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A Note About Z-Buffers
You may have noticed during the development of the previous shader that I switched to a
different Z-Buffering mode called W-Buffering by using the ZENABLE render state. I did this
for a specific reason, which is worth discussing at this point.

Depth buffering on most 3D hardware is done with a Z-Buffer. In this buffer, the depth is
stored as 1/z. This is convenient for the hardware because it needs this value to do proper
perspective interpolation. However, using 1/z has a negative consequence when the values
in the depth buffer are not linear. This means the values inside the depth buffer do not
grow proportionally to the actual depth, but follow more of an exponential curve.

In the case of your impostor shader, this would have made it difficult to empirically dis-
cover the Near_Dist and Far_Dist values without some extra math. The W-Buffering
scheme, on the other hand, uses the w value resulting from the projection matrix, which
is linear, and makes it easy to determine correct depth values. With a W-Buffer to deter-
mine the proper depth, simply follow this equation: WDepth = Depth / Far_Z_Clip.

Not all 3D hardware supports W-Buffering, and if such is the case, you will get an error
message and will need to revert to Z-Buffering.

If you have to do so, one solution to the problem of discovering the right depth values is
to manually project a fake position in 3D space and use the resulting z value from the
operation. To do so, you can use the built-in view_position and view_direction variables to
create and project a fake position in 3D space. The following shader code explains how
this could be achieved:

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Compute a proper z-buffer depth by projecting a fake position
// in 3D and extracting its final Z value
Out.Pos = float4(Pos.xy, 0, 1);
Out.Pos.z = mul(view_proj_matrix,

view_position+Near_Dist*view_direction).z;

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x +viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y +viewport_inv_height);

return Out;
}
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Using the Alpha Channel
When using a technique like the depth impostors, you must solve the problem of the
sharp transition between your in and out-of-focus areas. Adding multiple impostors can
help reduce the problem, but can also lead to the added fill rate expense due to the
increased number of times you fill the screen. Another way around this problem is to go
through the screen once and determine the amount of blurring to apply for each pixel.

As you render your scene initially, you can discover each object’s per-vertex depth by pass-
ing this depth information from the vertex shader to the pixel shader. Using this infor-
mation and knowing your near and far focus regions, you can calculate a per-pixel factor
that determines how in- or out-of-focus the pixel is.

Because your render target has an alpha channel, which is currently unused, the blurring
factors can be put in this channel and used in the final DOF pass to determine how much
of the blurred render target to apply. Before you can write this shader, though, you need
to decide how to calculate the blurring factor in the first place.

If you assume the near and far focus distances are the point at which the scene is totally
out-of-focus, you can define a little subregion right before which the output is progres-
sively blurred. Figure 6.9 explains this process. In your shader, this region, or range, will
be stored in variables called Near_Range and Far_Range.

The following shader code estimates the depth of field blurring factor based on Near_Dist,
Near_Range, Far_Dist and Far_Range:

float Blur = max(clamp(0,1, 1 - (Depth-Near_Dist)/Near_Range),
clamp(0,1, (Depth-(Far_Dist-Far_Range))/Far_Range));
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Figure 6.9  How to define an out-of-focus transition region.
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The clamp function in the code above is an HLSL function that takes in three parameters
and will ensure that the third parameter is within the range defined by the first two para-
meters.

Armed with this information, you are now ready to develop this new technique. You first
need to make a few adjustments to the vertex shader, specifically to the passes that render
the scene geometry; in other words, the Teapot and Elephant passes. The first thing you
need to do is compute the per-vertex depth and send it to the pixel shader. In reality, this
information is already computed for each vertex during the projection process and is
stored as Out.Pos.z and Out.Pos.w. By taking the w value resulting from the vertex position
projection and dividing it by the far clipping plane distance, you get a depth value in the
zero-to-one range. This also means you will need to set up a variable called far_clip that
contains the far clipping distance for your camera. To do this in the shader, all you need
to do is add an output variable to the vertex shader and pass the depth value to the pixel
shader through it. Applying this modification gives you the following vertex shader code:

float4x4 view_proj_matrix: register(c0);
float far_clip; 
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;
float1 Depth:   TEXCOORD1;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float2 Txr1: TEXCOORD0

)
{

VS_OUTPUT Out;
float4 OutPos;

// Compute the position of the vertex
Out.Pos = OutPos = mul(view_proj_matrix, inPos);
Out.Txr1 = Txr1;

// Send the depth to the pixel shader for encoding
Out.Depth = OutPos.w/far_clip;

return Out;
}
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With this change to your vertex shader, you need to make matching changes to your pixel
shader. You need to add an extra input parameter to the pixel shader, and use the equa-
tion determined previously to translate this depth into a blur factor. Remember to add the
needed Near_Dist, Near_Range, Far_Dist and Far_Range variables to both your Effect node and
your pixel shader.

The following pixel shader code takes in the interpolated vertex shader depth and outputs
the proper blur factor as the alpha value of your render target:

float Near_Range;
float Far_Range;
float Near_Dist;
float Far_Dist;
sampler Texture0; 
float4 ps_main(

float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0,
float1 Depth: TEXCOORD1

) : COLOR0
{

float Blur = max(clamp(0,1, 1 - (Depth-Near_Dist)/Near_Range),
clamp(0,1, (Depth-(Far_Dist-Far_Range))/Far_Range));

//  Output the pixel color along with the blurring factor
// The blurring factor being stored in the alpha channel of
// the output color so that it can be reused when doing the
// final DOF pass.
return float4(tex2D(Texture0,inTxr1).rgb,Blur);

}

n o t e

One drawback to using the alpha channel is that it prevents you from having translucent objects.
This is because the alpha value is used to represent blur and not translucency. This means you will
not be able to correctly blend objects that are affected by depth of field.

At this point, the alpha channel for your render target contains a blurring factor, which
tells you how much blurring to apply to each pixel. Figure 6.10 illustrates the content of
the alpha channel after the blurring factors are determined.

All you need to do is adapt your blending pass to take in both the blurred and original
render targets as texture, sample both of them, and use the blur factor to combine both
textures together. This can be done easily through the HLSL lerp function. You can add

Chapter 6   ■ Blurring Things Up104

TEAM LinG - Live, Informative, Non-cost and Genuine !



both textures to your rendering pass and change the pixel shader to combine them, which
should yield the following shader code:

float viewport_inv_width;
float viewport_inv_height;
float Near_Dist;
float Far_Dist;
float Near_Range;
float Far_Range;
sampler Texture0;
sampler Texture1;
sampler Texture2; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample our regular and blurred scene
float4 BlurColor = tex2D(Texture1,texCoord);
float4 SceneColor = tex2D(Texture0,texCoord);

// Interpolate the two textures based on the
// DOF blurring factor stored in SceneColor.a
return lerp(SceneColor,BlurColor,SceneColor.a);

}

After you are done, you can compile and run your shader. You should see results similar
to those shown in Figure 6.11. Notice how much smoother the transition is between the
in- and out-of-focus regions.
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your render target.
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The completed shader for this section can be found on the CD-ROM as shader_5.rfx. In
the second exercise at the end of this chapter, I invite you to simplify this shader by using
a lookup texture that contains the relationship between depth and the blurring factor.

A Note About Multiple Render Targets
Monopolizing the alpha channel for your DOF effect may seem excessive, and you may
wish to use it for other effects, but it’s a reasonable compromise under most circum-
stances. As an alternative to using your alpha channel, I figured that I should mention
what are called multiple render targets.

The latest hardware generations support a feature that allows you to render simultane-
ously to more than one render target. In essence, this allows you to output more than one
color value during your pixel shader, which will get put into different output textures. For
your depth of field effect, you could output your blurring factors to a different render tar-
get instead of being part of the alpha channel of your regular one, thus letting you use
your alpha for such things as translucency.

However, at the time of this writing, multiple render targets are still sparsely supported,
and I will not take advantage of them. In addition to this, multiple render targets are not
supported by RenderMonkey. On the bright side, however, you can expect support for this
feature to become more widespread with the next few 3D hardware generations.
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Figure 6.11  Final workspace and rendering result for the Alpha Channel
depth of field technique.
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Doing It Twice
The problem with the alpha channel approach is that you must render all your objects
with a special shader that sets the alpha channel as well as monopolizing your alpha chan-
nel for this task. Personally, as a developer, I dislike such techniques for one big reason:
they require that your whole application know that you intend to apply DOF to your
scene. In reality, screen effects should be separated enough from regular rendering to be
turned on and off without needing major changes in the way your scene is rendered. In
addition, until 3D hardware has more support for secondary render targets, monopoliz-
ing your alpha channel for depth of field may significantly restrict you from using it to
implement other rendering effects.

Another approach, which works in a similar way, is to render your scene, or at least each
object you want the effect applied to, twice. Once to fill your Z-buffer and render target,
and the second time to fill in another render target with depth information encoded
within the RGB components of the render target. You can then decode this depth infor-
mation within your DOF pass and use it to calculate a blurring factor per-pixel.

The obvious disadvantage of this approach is that it requires you to render your scene
twice, which may be too prohibitive in some applications. On the plus side, you can use
the depth information you have gathered for other shaders such as the Heat Haze effect,
which will be discussed in the next chapter.

Encoding Your Depth as a Rainbow of Colors

I mentioned a few paragraphs ago about encoding depth information as colors in a ren-
der target. Your first instinct might be to say: “Well, the depth is in the range of zero to
one, and so is a color component. Why can’t I just put the depth in a single component?”

This is true but it’s also false. Remember that most Z-buffers have 24 bits of precision for
their depth values, whereas color components only offer 8 bits. Now, you may ask about
those new 16- and 32-bit floating-point texture formats available on the latest hardware.
Unfortunately, at the time of this writing, their support is sparse and their performance is
even worse. For this generation of hardware, you cannot consider using them in any sort
of real-time application, but they are worth keeping in mind as their support and perfor-
mance improves.

Because you can’t yet count on support for floating-point textures, you must take matters
into your own hands, which isn’t so complicated. Because you want to divide a value that
can have up to 24 bits of precision into three components that have 8 bits, you can essen-
tially let each component represent a certain level of precision and let the hardware take
care of the little details for you.

For example, consider the full depth value that is contained between zero and one, and
simply put it in the red component of the texture. Because the texture is only eight bits’
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worth of precision, the hardware takes care of rounding out the extra unwanted precision,
which is equivalent to doing: Color.Red = round(Depth*256). You see that the hardware takes
care of automatically getting the 8 high bits of precision from your depth value. To repeat
the same process with the following 8 bits of precision, you simply need to remove the 8
high bits and repeat the same process. This is equivalent to: Color.Green = round((Depth*256
– Color.Red)*256).

This process, in HLSL form, yields some code similar to the following:

float4 Depth;
Depth.w = 1.0;
Depth.x = floor(inDepth.x*127)/127;
Depth.y = floor((inDepth.x-Depth.x)*127*127)/127;
Depth.z = 0;

In this code example, inDepth is the depth of the pixel in a zero to one range. Also notice
that I use 127 as a multiplier and only do two-color components. The use of 127 instead of
255 allows you to guard against overflows and allows you to potentially do additional oper-
ations, such as adding depth together, which I will use later on in this book. I have also
restricted my use of the color components to only the Red, Green, and Blue ones, giving
you 21 bits of precision, which is enough for the DOF effect and reduces the processing
cost. The reverse process, to convert an encoded depth back to a floating-point depth
value, is as follows:

float Depth = DepthValue.r + DepthValue.g/127 +
DepthValue.b/(127*127);

Because of this encoding, any interpolation of the
depth values in the RGB form will give wrong depth
results. This has two consequences for your applica-
tions. First of all, you will need to do the conversion
from depth to RGB in the pixel shader, because the
vertex information interpolation will distort your val-
ues before they reach the pixel shader. Second, you
must ensure that any filtering on your depth render
targets, either bilinear or trilinear, is disabled before
you read from the texture because the blending
between two neighboring pixels will obviously give a
wrong result. Figure 6.12 shows what the encoded
depth for your sample scene looks like.

This technique essentially gives you the same abilities
the new floating-point texture formats give you, with-
out your having to worry if a particular hardware supports them or not. Armed with this
knowledge, you can now attack and develop the two-pass DOF shader.
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Creating a Two-Pass DOF Shader

Creating a two-pass shader is straightforward and can be separated into two phases. In the
first phase, you will need to render your scene a second time, taking the depth values and
encoding them into a new depth render target. In the second phase, you will use your depth
texture, decode the depth information, and use it to decide the correct blurring factor.

For the first phase, you will need a new render target for the depth information. Right-
click on the Effect node, select Add Render Target, and rename it to Depth. You will also
need to create a copy of both the Teapot and Elephant rendering Pass nodes. To do so, use
the right-click menu to copy and paste them. You will also need to reposition them so that
they are just below the original ones by using the Move Up option from the right-click
menu.

With the two new nodes, you will need to ensure that they render to the Depth render tar-
get and change their vertex and pixel shaders so they encode the depth values to the tex-
ture. The following is the resulting vertex shader code:

float4x4 view_proj_matrix;
float far_clip; 
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float1 Depth:   TEXCOORD0;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float2 Txr1: TEXCOORD0

)
{

VS_OUTPUT Out;
float4 OutPos;

// Compute the position of the vertex
Out.Pos = OutPos = mul(view_proj_matrix, inPos);

// Send the depth to the pixel shader for encoding
Out.Depth = OutPos.w/far_clip;
return Out;

}
The pixel shader code is as follows:
float4 ps_main(

float4 inDepth: TEXCOORD0
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) : COLOR0
{

//  Output the depth as computed by
//  the vertex shader
float4 Depth;
Depth.w = 1.0;
Depth.x = floor(inDepth.x*127)/127;
Depth.y = floor((inDepth.x-Depth.x)*127*127)/127;
Depth.z = 0;

return Depth;
}

Looking at the preceding vertex shader, you will notice the following line when the depth
is output to the pixel shader.

Out.Depth = OutPos.w/far_clip;

The reason I divide the w value by far_clip is that the depth value computed during the
projection process is in actual scene depth. Because you want to encode a value in the zero
to one range, you need to scale the depth down using the value for the far clipping plane,
since you know your scene depth will be somewhere in the zero to far_clip range initially.
Note that you will need to create this variable and ensure that it is set to the same value as
the far clip plane for your camera.

For the second phase of this shader, you need to access the depth information, decode it,
compute the blurring factor for the pixel, and render the appropriate blend between the
unblurred and blurred versions of the scene. This is the same process done with the Alpha
Channel technique, except for the blurring factor being determined during the Present
pass instead of during the rendering of the scene objects.

For this second pass, you need to make sure the Present render pass can access all three
major render targets: RenderTarget, Blur, and Depth. In addition, you need to make changes
to the pixel shader so it will read from the depth texture, decode the values, determine the
blurring factor, and render the final output. I will not go into specific details, because each
component has already been covered, but you should end up with the following pixel
shader:

float viewport_inv_width;
float viewport_inv_height;
float Near_Dist;
float Far_Dist;
float Near_Range;
float Far_Range;
sampler Texture0;
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sampler Texture1;
sampler Texture2; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample and decode our depth value
float4 DepthValue = tex2D(Texture2,texCoord);
float Depth = DepthValue.r + DepthValue.g/127

+ DepthValue.b/(127*127);

// Sample our regular and blurred scene
float4 BlurColor = tex2D(Texture1,texCoord);
float4 SceneColor = tex2D(Texture0,texCoord);

// Use the defined ranges to determine the proper
// combination of both render targets based on
// the distance.
float Blur = max(clamp(0,1, 1 - (Depth-Near_Dist)/Near_Range),

clamp(0,1, (Depth-(Far_Dist-Far_Range))/Far_Range));

return lerp(SceneColor,BlurColor,clamp(0,1,Blur));
}

Close the editors, compile the shader, and you have your two-pass depth of field shader.
Figure 6.13 shows the resulting workspace and render output for this shader. This com-
pleted shader can also be found on the CD-ROM as shader_6.rfx.

In the third exercise at the end of this chapter, I will invite you to use intermediate blur
textures to create a smoother transition between the focus and out-of-focus regions.

What About the Z-Buffer?
One thing you may have wondered throughout this chapter is, why did I bend over back-
wards to determine the depth of the scene objects? Cleverly, you may ask, “Well, because
we are rendering our scene, and the depth values get put into the Z-Buffer, why can’t we
just use that?” This is a very valid point, and I must explain why I have not done so.

In theory, the Z-Buffer is essentially a texture that contains encoded depth values for each
pixel on the screen. If you could use it as a source texture and decode the depth, you could
use those values to do your effect without any special work. But the reality is that most 3D
hardware has special implementations of Z-Buffers and will not let you access depth val-
ues directly, thus limiting this approach. In addition to this, the 3D rendering APIs do not
give obvious means to access and treat the depth buffer as a texture.
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On the plus side, however, more hardware vendors are supporting extensions, such as
shadow mapping, which requires texture access to depth buffers. Current support is still
limited and restrictive, but developers have been asking for this feature, and you can expect
a more broad support for this in the following generations of 3D hardware and APIs.

Meanwhile, unless you are developing on the Microsoft Xbox, you will have to stick with
the basic approaches developed in this chapter.

Special Considerations
A last little thing I have not talked about yet but that is worth considering is the way DOF
happens on the transition between in-focus and out-of-focus regions. If you take another
peek at Figure 6.1, you will notice that blurriness for the edge of an out-of focus object
actually extends onto objects that are in focus.

This phenomenon is fully understandable when you think about the way depth of field
happens. In essence, an out-of-focus object appears blurred because many ghost images
of it appear offset from its real position. These ghost images come from rays of light that
come in at a nonperpendicular angle from the camera.

If you look at the results from all the DOF shader variations developed during this 
chapter, however, none exhibit this side effect. This is, of course, because you are faking
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the effect, trying to reproduce something that looks similar to DOF without actually
mimicking the physics behind the effect.

If you wish to re-create such “border blurring,” it can be accomplished with the use of per-
pixel DOF techniques. Although I will not fully develop such shaders in this chapter, I
thought it might be useful for you to know how this could be carried out.

The idea is simple because blurring contributions for a particular pixel actually come
from many neighboring ones. You may want to sample your depth information at many
of the neighbors, and weigh the contributions together. If you think about it, because the
blurred texture color comes from a set of neighbors, it makes sense to also determine the
DOF factor in a similar fashion. In fact, you can use the same kernels you used with the
blurring phase to find out the weighed depth for each pixel. Figure 6.14 illustrates this
process in more detail.

Obviously, the complexity and
cost of this approach is greater
and is generally not needed
because it adds little visual
quality to the results. However,
some applications may benefit
from the added realism.

It’s Your Turn!
As you can see, great effects can be achieved with little work, and your work doesn’t have
to be perfect to look good. It is now time to exercise your own creativity and expand on
what you have learned throughout the chapter. The solutions to these exercises can be
found in Appendix D.

Exercise 1: MULTIPLE IMPOSTORS
For this first exercise, I invite you to improve on the depth impostor shader developed in
this chapter. One of the major drawbacks of the impostor approach is that it displays a
sharp transition between the in and out-of-focus regions. One way to counteract this is to
render multiple far and near blurring planes, creating a smoother transition. In this exer-
cise, simply add additional front and near blurring planes, which are slightly offset in
depth, and use alpha blending to create a less blurred transition region.

Exercise 2: USING A LOOKUP TEXTURE
In this second exercise, I invite you to improve on the Alpha Channel DOF shader devel-
oped in this chapter. One of the issues with this shader is that it requires you to calculate
the full depth-to-blur function for each pixel of each object in your scene. This can be
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by sampling the depth from many neighbors.
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cumbersome, especially if you use a complex formula to compute the DOF blurring fac-
tor. For this exercise, I invite you to create a lookup texture, using a separate render target
that will be filled with your precomputed equation. You will then use this lookup texture
within your scene rendering to determine the proper blurring in relation to the pixel
depth.

Exercise 3: USING INTERMEDIATE BLUR 
TEXTURES TO CREATE A SMOOTHER TRANSITION
For the last exercise of this chapter, I invite you to take advantage of the intermediate
blurred render targets to create a smoother transition. Adapt the two-pass DOF shader so
that it combines both the final blur and an intermediate blur to produce the final DOF
result. To accomplish this, you need to add an additional render target to keep the result
of the intermediate blur and use this new texture in your final pixel shader by combining
the scene render target, the intermediate blur, and the complete blur.

What’s Next?
Depth of field is a great yet simple effect. By re-creating natural phenomena that occur in
cameras and the human eye, you can create truly stunning and immersive graphics. In
addition, you have finally seen how simple screen effects can be combined to produce
more complex and impressive ones.

Keep in mind that I reviewed different approaches to the problem, because some may be
more suitable to particular applications or hardware. I also reviewed some techniques that
may not be applicable on current hardware but are worth keeping in mind for future gen-
erations of 3D graphics cards.

In the next chapter, I keep going along the same lines and introduce your to another
screen effect called heat haze, or heat shimmer. The heat haze effect re-creates the distor-
tion effect you may have noticed when hot air rises from a surface. I will introduce the
fundamentals of the phenomenon and describe to you some techniques that can be used
to reproduce this effect.
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It’s Getting 
Hot in Here

chapter 7

Have you ever looked at the pavement on a hot sunny day? Ever noticed how the
image in the distance seems distorted? Ever wonder why? It’s due to a natural
phenomenon called heat haze, or heat shimmer. In this chapter you will learn

where this effect comes from in the real world and how you can reproduce it in a 3D ren-
dering environment.

With this effect, you will be able to re-create the heat distortion seen on hot pavement as
well as the same effect observed from a heat source such as an open flame. I will explain
how the effect occurs from a physical point of view and then follow up with actual tech-
niques that can be performed through RenderMonkey. So let’s start with explaining how
heat haze happens in the first place.

What Is Heat Haze?
Heat haze, or heat shimmer, is an effect that occurs naturally in real life where an image
seems distorted because of the rising air off a hot surface. This is commonly seen above
asphalt pavement on a warm and sunny day. This phenomenon stems from a simple phys-
ical concept called refraction.

Although you may think of light as a wave, particle, or both, most people assume that it
always travels in a perfectly straight line. This is true most of the time, but there are some
cases where light direction actually changes.

Have you ever noticed a particular phenomenon when you put a straw in a glass of water?
At the separation point between the water and air, if you look at it sideways, it appears as
if the straw is cut in half. In other words, the part of the straw outside the water appears
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to go in at an angle different from the part in the water. This visual effect is due to a phys-
ical phenomenon called refraction. In fact, light changes its direction when it goes from
one medium to another with a different density. Figure 7.1 shows how this happens.

Knowing the densities of both materials, you can calculate how a ray of light is redirected
to a new direction. To calculate the new direction for rays of light, you can use Snell’s law,
shown in Figure 7.2. Also note that under HLSL, you can use the built-in function refract
to compute the new light direction based on the incoming light direction, surface normal,
and media densities. In fact, under the right conditions and the right light and surface
angles, a medium can become reflective through refraction.
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Figure 7.1  Illustration of what happens when a ray of light travels from
a medium with one density to another with a different density.

Figure 7.2  Equation you can use to
calculate refraction based on the
incoming light direction, the surface
normal, and media densities. This
equation is also known as Snell’s Law.
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In the first exercise at the end of this chapter, I will invite you to develop a new shader
from scratch, one which implements refraction. You will need to use an environment map
and the HLSL refract function to perform this. This exercise will probably be the most
difficult you have encountered so far and will be your first chance to use all that you have
learned thus far.

All this discussion about refraction and media densities is interesting, but it still does not
explain how heat shimmer happens. Starting with the hot pavement example. . . . Asphalt
has a property that allows it to store heat; under sunlight the surface itself can get very hot.
This has the effect of heating up the air close to the surface, which in turn rises above the
surface because hot air is lighter than colder air.

The reason hot air rises above colder air stems from one main phenomenon. As air gets
hotter, it expands and its density decreases. The cold air of greater density is heavier, and
it heads down as the hotter air rises. This hot air, because it is of lesser density, also has a
different refraction index than regular air. This causes the pockets of hot air to act as pock-
ets of media with a differing refraction index, causing light to bend when it encounters
them. Figure 7.3 shows this process for the hot pavement example.

Because of the pockets of varying air density, it is hard, if not impossible, to model heat
shimmer accurately. Because of this, it is important with this effect not to follow the
physics behind the phenomenon but to re-create it in a way that is convincing to the
human eye. In the following sections, I will introduce you to a basic technique that can be
used to simulate this phenomenon and teach you how you can use it to create the phe-
nomenon as it would appear above pavement and over a fire.
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Figure 7.3  Diagram of how heat haze happens above hot pavement.
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Uses for Heat Haze
Although the hot pavement example serves as a good illustration for the heat haze effect,
it is worth going over a few different situations in which this effect can be used. Starting
with the hot pavement scenario, you can see that the effect is similar to the depth of field
effect covered in the previous chapter.

In fact, you can apply heat haze distortions in a distance-based way by defining a distance
region for which the effect kicks in. Because of this, you can apply the same techniques
used with DOF, such as impostors, to render your heat-distorted scene.

In addition to the hot pavement scenario, you can use the same effect to emulate hot
gasses coming out of a fire or a jet engine, for example. For those effects, you can apply
the same principle for the effect but use a particle system to render your distorted por-
tions of the scene. We will discuss this approach later in this chapter.

In this chapter, you will learn that this basic effect can also be used to emulate effects, such
as refraction for wavy water or even some nonrealistic sci–fi-type spatial distortions by
using cleverly crafted distortion maps.

It’s All About Distortion Maps
The most important thing needed to create a heat haze effect is the ability to distort your
render target when you copy it back to your frame buffer. This section will serve as a quick
introduction to distortion and bumpmaps.

The process for the heat haze effect is simple. You render your scene to a render target, as
you did in Chapter 5, “Looking Through a Filter,” and Chapter 6, “Blurring Things Up.”
However, this time when you copy your render target pixels to the screen, you will distort
them from their original state.

Distortion does not mean changing the pixel itself; it means picking a neighboring pixel
instead of the one that matches the pixel you are rendering to. In doing this, you are emu-
lating the light ray deviations caused by the refraction within the hot air, as shown in Fig-
ure 7.3. The process is accomplished by using distortion maps, which cause pixels to be
offset when copying them from the renderable texture to the screen.

One basic approach would be to skew the texture coordinates on your render target copy
geometry. This would create an offset on the pixels, but it would be of limited resolution
and use because the offset would be constant for the whole screen, and you obviously
want a somewhat random distortion throughout the screen.

A better approach is to use a distortion map. Before sampling the actual render target, you
will sample the distortion map. The values contained within this map are not actual pix-
els, but offsets, which can be used to offset how the render target itself is read.
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Based on the type of effect, different types of distortion maps can be used. Noisy ones can
be well suited for effects such as heat haze, and more smooth ones can be used for effects
such as wavy water refraction. Either way, there is one more detail that you must know
about before you can use a distortion map.

Because the distortion map is intended to be an offset and not a color, it would be nice if
its values were in a –1 to 1 range. However, colors within textures are encoded in a 0 to 1
range. To correct this, you need to scale and offset the values read from the distortion map
so that they will map to the correct range. You can accomplish this by scaling down the
color values by 2 and subtracting 1 from the result. The following code shows how the val-
ues from a distortion map can be properly offset.

// Compute the distortion by reading the distortion map
// and bringing it into the -1 to 1 range. The OffsetScale
// is used to give control over final range of the distortion.
float2 offset = tex3D(Distortion,

float3(texCoord2.xy,0)).xy;
offset = ((offset*2.0)-1.0)*OffsetScale;

n o t e

When authoring distortion maps, keep in mind that the values read from the texture will be offset
and scaled. This means that a 0 offset is not 0 but 0.5 in terms of colors.

Taking this offset texture, you can use the computed values to do a dependent texture
lookup to read your render target in an offset way. The shader code below shows how the
whole process works:

float OffsetScale;
sampler Texture0;
sampler Texture1; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read and scale the distortion offsets
float2 offset = tex3D(Texture1,float3(texCoord.x,texCoord.y,0)).xy;
offset = ((offset*2.0)-1.0)*OffsetScale;

// Offset texture lookup into our render target
return tex2D(Texture0,texCoord+offset);

}

In the preceding code, you may have noticed the OffsetScale variable. Because the distor-
tion map, once scaled and offset, maps to a –1 to 1 range, you may not wish to use this full
range when applying the distortion to the render target. Doing so results in an offset range
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that equals the whole render target, which is too much for most applications. The 
OffsetScale variable is used to control the range, or amplitude, of your distortion map so
that it may be more usable within your application.

n o t e

As you may have noticed, using distortion maps to perform heat haze does not follow the rules of
refraction. Because heat shimmer is a complex effect, I will focus on making an effect that looks
good, although it is not accurate. You will get to use Snell’s Law in Chapter 11, “Mirror, Mirror, On
the Wall,” to create accurate refraction.

I will not cover the topic of bumpmaps in this chapter; I just wanted to mention that
bumpmaps essentially follow the same principle as distortion maps but modify the sur-
face normal of an object instead of being used to distort a render target copy. I will talk
some more about bumpmaps when I get into the lighting chapters later in this book.

Putting a Background to Your Shader
In your previous shaders, there was not much in the background beyond the two objects.
Because the heat haze effect needs a little more than a teapot and an elephant to appear in
all its glory, I will show how you can use an environment map to spice your scene up.

Imagine yourself in an outside scene. You would like to use this environment as a back-
ground or a source of reflection for your shader. How can you do this?

The basic approach would be to take snapshots from different angles and composite them
together to form a full view of your environment. There are many ways to do this, and I
will not delve into the explanation of some of the common techniques, such as sphere
maps or parabolic maps. Because almost all the latest video cards have built-in support
for what are called cube maps, this is the approach I will explore.

Imagine that you want to take a full panoramic snapshot of an environment. The best way
to do this would be to take many pictures at different angles and composite them around
a virtual sphere. Each point on the sphere would represent the environment from a par-
ticular angle. This approach poses some mathematical problems, however, and is gener-
ally too complex for implementation on hardware.

To work around this limitation, 3D hardware makers came up with the clever idea of
mapping the environment onto a cube instead of a sphere, as shown in Figure 7.4.
Although this approach may seem awkward, it has several advantages. First, by assimilat-
ing a 3D vector pointing in a specific direction, such as a reflection vector, the hardware
can easily deduce which face of the cubemap to look up and at which position to do so.
This makes it easy for hardware vendors to implement because it is essentially an exten-
sion to the regular approach taken to sample a texture.
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The second major advantage to a cube environment map is that it is easy to create.
Because you compose your environment on a cube, you can simply position a camera at
90-degree increments, rendering each face of the cubemap one by one. This can be easily
done on today’s hardware using standard render targets.

Notice that the texture coordinates used to access the texture represent the direction vec-
tors for which you wish to sample the texture, which means you will need to pass a three-
component vector when sampling such a texture. You also need to tell RenderMonkey to
sample a cube texture by using the texCUBE HLSL function.

n o t e

Because cubemaps are essentially a composition of six regular textures, you need to use a texture
format that supports such an arrangement. At the time of this writing, only the Microsoft .DDS file
format supports cubemaps natively by allowing you to compose six individual textures and save
them as a cubemap.

Let’s now create a basic shader that uses a sample cubemap to make a shader which shows
a teapot against an environmental background. This completed shader can be found as
shader_1.rfx on the CD-ROM.

Starting with a basic shader, similar to the shader_1.rfx developed in Chapter 6, you need
a blank pass to render the environment map. Create this new pass by using Add Pass from
the Effect node right-click menu.
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For this node, you need both a model and an environment texture to use. Create a new
texture variable and select the file snow.dds by double-clicking your new node. Keep in
mind that because this is a cube texture and not a regular texture, you need to make your
texture variable of type CUBEMAP. Also remember to properly set up your texture object
within your environment pass node.

Now that you have a texture, you need something to render it to. Because you want to
cover the whole screen, no matter where the camera is looking, a big sphere centered at
the camera position would do the trick. Such a sphere model has been supplied with 
RenderMonkey as sphere.3ds. Create a new Model node in your Effect node, and point it
to the proper model file.

With this setup, all you need is suitable shader code that takes into consideration the rota-
tion of the camera and displays the proper texture coordinates, so you see the correct envi-
ronment based on where the camera is looking.

Keep in mind that the sphere is of finite size, but you wish to have it treated as if it was of
infinite size. To do so, you need to disable the Z-Buffer when rendering this object, by
turning off both the ZENABLE and ZWRITEENBALE render states.

The sphere geometry is centered about the origin, but you need to ensure that it is always
positioned where the camera is. Simply offset the sphere geometry by the view_position
variable, which contains the current camera position.

You must pass to the pixel shader the direction in which you want to sample the cubemap.
In other words, you need to determine the eye vector for each vertex of the sphere. For
your convenience, because the sphere geometry model supplied with RenderMonkey is a
unit sphere and you have centered it about the camera, the eye vector is simply the posi-
tion of the vertex.

Putting this together yields the following vertex shader code:

float4x4 view_proj_matrix;
float4 view_position; 
struct VS_OUTPUT
{

float4 Pos: POSITION;
float3 dir: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Center environment around camera and pass the environment direction
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// to the pixel shader.
Out.Pos = mul(view_proj_matrix, float4(Pos.xyz + view_position, 1));
Out.dir = Pos.xyz;

return Out;
}

On the other hand, the pixel shader code for this environment pass simply needs to 
sample the texture and output the colors to the frame buffer. Remember that because the
texture is a cubemap, you must use the texCUBE function and not the tex2D function to sam-
ple the texture. Here is the resulting pixel shader code:

sampler Environment; 
float4 ps_main(float3 dir: TEXCOORD0) : COLOR
{

// Sample and output the environment map color
return texCUBE(Environment, dir);

}

Now, all you need is some extra geometry and,
of course, a teapot! You can copy and paste a
teapot-rendering pass from one of the previous
shaders or repeat the same steps taken in the
past. With those two passes, you have a simple
shader that renders a teapot with a background
based on the environment map, as shown in
Figure 7.5.

There is one thing missing from this shader. To
create heat haze, you need to use a copy of the
rendered scene. As you learned in the last two
chapters, to do this you need to ensure that
your scene is rendered to a render target
instead of the frame buffer. For this, you need
to create a render target node within your
scene and ensure that both the environment
and the teapot pass render to this render target.

You also need to have the scene rendered to the frame buffer because the heat haze effect is
used to enhance the scene and not to construct it in the first place. This means you also need
to create, or copy from a previous shader, another pass node, which takes care of copying
your render target back to the frame buffer after all objects have been rendered to it.

The final version of this template shader is included on the CD-ROM as shader_2.rfx.
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Hitting the Pavement
Now that you have a basic scene with an object and a background, it is time to implement
the simplest form of heat haze. Based on the hot pavement scenario explained earlier in
this chapter, you can take an approach similar to the one taken for the depth of field effect
used in Chapter 6. If you assume that the heat shimmer only appears at a certain distance
from the camera, you can use the depth impostor approach to produce a simple yet con-
vincing heat haze effect.

For this shader, you can simply use the base shader developed in the previous section and
copy the depth impostor pass from the shader in Chapter 6. As with the depth impostor,
you need to add the proper Far_Dist variable to your workspace, which I will call Heat_Dist.

With this depth impostor shader pass, you simply need to adjust the vertex and pixel
shaders based on what I described in the last few paragraphs. With the proper changes to
vertex shader to use the Heat_Dist variable, you should have the following shader code:

float Heat_Dist;
float viewport_inv_width;
float viewport_inv_height;
float4x4 view_proj_matrix; 
struct VS_OUTPUT
{

float4 Pos: POSITION;
float2 texCoord: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
// The Z value contains the depth position of the
// Heat Impostor
Out.Pos = float4(Pos.xy, Heat_Dist, 1);

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x + viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y + viewport_inv_height);

return Out;
}
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For the pixel shader, instead of simply fetching a blurred render target, you need to apply
the distortion code illustrated earlier and apply it to your original render target. With
these modifications, you should get the following pixel shader code:

float OffsetScale;
float time_0_1;
sampler Texture0;
sampler Texture1; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read and scale the distortion offsets
float2 offset = tex3D(Texture1,float3(8*texCoord.x,8*texCoord.y,0)).xy;
offset = ((offset*2.0)-1.0)*OffsetScale;

// Fetch render target with the texture offset applied
return tex2D(Texture0,texCoord+offset);

}

The texture coordinates for the distortion map are multiplied by 8 in the proposed pixel
shader code. This is merely to allow a better noisiness of the texture by repeating the dis-
tortion map multiple times throughout the screen. For the purpose of this shader, you can
use the texture noisevolume.dds, which has been supplied on the CD-ROM. In addition to
this, to allow for the distortion map to be repeated multiple time across the screen, you
will need to ensure that the texture object states ADDRESSU and ADDRESSV are set to D3DTAD-
DRESS_WRAP. Figure 7.6 shows the final rendered output for this shader. This shader has also
been included on the CD-ROM as shader_3.rfx.
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n o t e

In the hot pavement example, you may notice that the heat shimmer phenomenon dissipates a few
meters above the ground. In this implementation, the effect takes over the whole screen. If you
wish to emulate this behavior, you could fade out the impostor in relationship to the ground height
or simply take advantage of the technique exposed in the next section.

The previous shader, however, is missing something; the distortion is static and does not
move relative to the screen. In the hot pavement example, hot gasses rise from the surface,
causing the distortion to appear to move upwards. By using the built-in time_0_1 variable,
which returns a value that progresses from 0 to 1 over time, you can change the pixel
shader to animate the distortion map. Because the distortion map is a volume texture
where each slice of the texture is a frame of animation for this texture, you also can apply
the time animation to the Z component of the texture to create even more animation. By
applying those changes, you get the following pixel shader code:

float OffsetScale;
float time_0_1;
sampler Texture0;
sampler Texture1;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read and scale the distortion offsets
float2 offset = tex3D(Texture1,float3(8*texCoord.x,

8*texCoord.y+2*time_0_1,time_0_1)).xy;
offset = ((offset*2.0)-1.0)*OffsetScale;

return tex2D(Texture0,texCoord+offset);
}

n o t e

Volume texture enables you to store pixels in 3D instead of 2D and to address its texels using 
not only X and Y coordinates but also using Z. In simpler terms, you can imagine a volume texture
as a set of regular textures layered on top of each other. Because volume textures are a special
hardware-supported format, they can only be stored using .DDS files.

This animation makes the distortions look more realistic and natural. In the second exer-
cise at the end of this chapter, I will invite you to explore a different approach to animat-
ing the distortion map so that it looks even more natural. I have included this shader as
shader_4.rfx on the CD-ROM.
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Looking Above the Flame
The problem with the depth-based approach is that it only considers cases where the
whole environment at a certain distance is composed of heated air. The reality is that the
heat haze phenomenon can be more localized for a jet exhaust or an open flame. Because
the heat haze effect simply involves taking a copy of your current scene and rendering a
distorted version of this same scene where you want to apply the effect, this means the
effect can be applied to any type of geometry you wish throughout your scene.

The heat haze effect can be applied not only to depth impostors but also to any piece of
geometry in your scene. I will now develop a new shader that takes advantage of the same
template scene developed earlier but uses a particle system that emits screen-facing poly-
gons from the spout of the teapot, essentially mimicking what hot gasses emanating from
the teapot would look like.

This code is based on the ParticleSystem.rfx sample file included with RenderMonkey.

This sample file takes advantage of a model that is composed of a set of individual rectan-
gles which are all set up in the same way with the exception of their Z-coordinate, which
increments from 0 to 1 for each polygon. The individual Z value for each polygon allows
you to distinguish between each particle so you can animate them individually.

The sample shader that comes with RenderMonkey emits flame-like particles from the
spout of a teapot. This is similar to what you want to do with the heat haze effect. The ver-
tex shader for this sample is as follows:

float4x4 view_proj_matrix: register(c0);
float4x4 view_matrix: register(c4);
float time_0_X: register(c8);
float4 particleSystemPosition: register(c9);
float particleSystemShape: register(c10);
float particleSpread: register(c11);
float particleSpeed: register(c12);
float particleSystemHeight: register(c13);
float particleSize: register(c14);
// The model for the particle system consists of a hundred quads.
// These quads are simple (-1,-1) to (1,1) quads where each quad
// has a z ranging from 0 to 1. The z will be used to distinguish
// between different particles

struct VS_OUTPUT
{

float4 Pos: POSITION;
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float2 texCoord: TEXCOORD0;
float color: TEXCOORD1;

};

VS_OUTPUT main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Loop particles
float t = frac(Pos.z + particleSpeed * time_0_X);
// Determine the shape of the system
float s = pow(t, particleSystemShape);

float3 pos;
// Spread particles in a semi-random fashion
pos.x = particleSpread * s * cos(62 * Pos.z);
pos.z = particleSpread * s * sin(163 * Pos.z);
// Particles goes up
pos.y = particleSystemHeight * t;

// Billboard the quads.
// The view matrix gives us our right and up vectors.
pos += particleSize * (Pos.x * view_matrix[0] + Pos.y * view_matrix[1]);
// And put the system into place
pos += particleSystemPosition;

Out.Pos = mul(view_proj_matrix, float4(pos, 1));
Out.texCoord = Pos.xy;
Out.color = 1 - t;

return Out;
}

The shader also has the following pixel shader:

float particleShape: register(c0);
sampler Flame: register(s0);
float4 main(float2 texCoord: TEXCOORD0, float color: TEXCOORD1) : COLOR
{

// Fade the particle to a circular shape
float fade = pow(dot(texCoord, texCoord), particleShape);
return (1 - fade) * tex1D(Flame, color);

}
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You can take the particle pass from RenderMonkey’s sample shader and copy it to your
template shader by using the right-click menu Copy and Paste options. With this shader
in place, you need to make some adjustments for it to work properly with the heat haze
effect.

First of all, you need to re-create many of the variables that existed in the sample par-
ticle shader and that are needed by the particle rendering pass. These variables include
particleShape, particleSize, particleSystemHeight, particleSpeed, particleSystemShape, and
particleSpread. With these variables in place, you need to make a few more changes to the
shader for it to render the heat haze effect.

Besides this, you need to make a few modifications to the vertex shader. The essence of the
changes is that the texturing on the particles matches the screen positions of the render
target, and not the full texture you would normally use for a particle. To do this, you must
calculate the screen x and y positions for each particle vertex and pass that to the pixel
shader as a texture coordinate. This can be done with the following code:

texCoord.x = ((pPos.x/pPos.w)+1)*0.5;
texCoord.y = ((-pPos.y/pPos.w)+1)*0.5;

With this, the only other thing you need to know is the time, or life, of the particle. Know-
ing this enables you to properly fade in and out the heat haze effect within the pixel
shader. This has been done by passing this value through the Z component of the texture
coordinate.

The final vertex shader code resulting from these modifications is as follows:

float4x4 view_proj_matrix;
float4x4 view_matrix;
float time_0_X;
float4 particleSystemPosition;
float particleSystemShape;
float particleSpread;
float particleSpeed;
float particleSystemHeight;
float particleSize

struct VS_OUTPUT
{

float4 Pos: POSITION;
float3 texCoord: TEXCOORD0;
float2 texCoord2: TEXCOORD1;

};
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VS_OUTPUT main(float4 Pos: POSITION, float2 inTxr:TEXCOORD0)
{

VS_OUTPUT Out;

// Loop particles
float t = frac(Pos.z + particleSpeed * time_0_X);

// Determine the shape of the system
float s = pow(t, particleSystemShape);

float3 pos;
// Spread particles in a semi-random fashion
pos.x = particleSpread * s * cos(62 * Pos.z);
pos.z = particleSpread * s * sin(163 * Pos.z);
// Particles goes up
pos.y = particleSystemHeight * t;

// Billboard the quads.
// The view matrix gives us our right and up vectors.
pos += particleSize * (Pos.x * view_matrix[0] + Pos.y * view_matrix[1]);
// And put the system into place
pos += particleSystemPosition;

float4 pPos = mul(view_proj_matrix, float4(pos, 1));
Out.Pos = pPos;

Out.texCoord.x = ((pPos.x/pPos.w)+1)*0.5;
Out.texCoord.y = ((-pPos.y/pPos.w)+1)*0.5;
Out.texCoord.z = s;
Out.texCoord2 = Pos.xy;

return Out;
}

You need to do matching adjustments within your pixel shader. All you really need to
change is to sample your offset texture before you read pixels from the render target. Mak-
ing these modifications should yield the following pixel shader code:

float OffsetScale;
float particleShape;
sampler RT;
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sampler Distortion;
float4 main(float3 texCoord: TEXCOORD0,float2 texCoord2: TEXCOORD1) : COLOR
{

float2 offset = tex3D(Distortion,
float3(texCoord2.xy,0)).xy;

offset = ((offset*2.0)-1.0)*OffsetScale;

float fade = pow(dot(texCoord2, texCoord2), particleShape);
return float4(tex2D(RT, texCoord.xy+offset).xyz,(1 - fade));

}

With all those modifications, you are now ready to see the results. Compile this shader by
pressing F7, and your output should resemble the one in Figure 7.7. The final version of
this shader can be found on the CD-ROM as shader_5.rfx.

It’s Your Turn!
Heat haze is a great screen-based effect and can bring much realism to your renderings.
In addition, it serves as a great example of how it is not necessary to reproduce an effect
perfectly to get good results when you have a basic understanding of how the effect hap-
pens in the first place. It is now time to exercise your own creativity and expand on what
you have learned throughout the chapter. As always, the solutions to these exercises can be
found in Appendix D.
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Exercise 1: YOUR OWN REFRACTION SHADER
Here’s a way to exercise your creativity and create a full shader on your own. Make a sim-
ple scene, rendering both an environment map and a refractive teapot. Set up your scene
so that the environment map is rendered in the background. Then render a teapot where
you use the view_position vector for your camera and the refract built-in function to com-
pute a new view direction to look up into the environment map.

It may seem like I am leaving you in the dark about how to implement this effect. This is
so you can explore and experiment on your own. If you get stuck, you can consult the
solution in Appendix D.

Also remember that the air-to-glass refraction index is 1.33.

Exercise 2: MAKING IT MORE LIVELY
The results of the distance-based heat haze effect developed in this chapter looked too sta-
tic and nonrealistic. One way to significantly improve on this is to animate your distor-
tion map. For this exercise, take advantage of the built-in time variables in RenderMonkey
to animate the texture coordinates to the distortion map you saw earlier in this chapter.
To make it even better looking, sample the distortion map twice at two different locations
and combine the results. Doing this has the effect of creating a less repetitive distortion
texture than using a single sample. Also remember that for it to look good, your distor-
tion map should animate upwards to give the impression that the hot air is rising.

What’s Next?
In this chapter, you learned that complex effects such as heat haze can be re-created
through simple techniques. By taking a complex idea and observing it closely, you can
deduce techniques that can re-create such effects in a convincing yet simple approach.

The heat haze effect you learned in this chapter can serve to represent the image distor-
tions that come from hot air rising from heat sources. However, the same basic technique
can also be used to re-create other distortion effects, such as waving water refractions or
even some sci-fi special distortion effects such as worm holes or shock waves.

Your bag of tricks now contains techniques to both blur and distort your environment. In
the next chapter, we’ll explore a new phenomenon where you will learn how to render
brightness in your scene. In fact, light from the sun is a thousand times brighter than light
from a candle. Although hardware can correctly convey color information, it simply lacks
the precision to convey brightness information and the phenomena that can occur from
it. Throughout the next chapter, we’ll survey and explore techniques to manage high
dynamic range and learn how to emulate this on today’s and tomorrow’s 3D hardware.
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133

Making Your 
Day Brighter

chapter 8

There have been many debates in the past about whether eight bits of resolution
per color component are enough to represent all the colors the human eye can
see. Generally speaking, eight bits are plenty, but this does not take into consider-

ation something that is of crucial importance in photography.

Although 256 colors per component is sufficient to represent color, what about light
intensity? The difference in intensity between candlelight and sunlight is on the order of
thousands to one, which obviously can’t be represented with only eight bits worth of res-
olution. You may think this is of little importance, but here are a few real-life examples of
how this makes a difference.

Let’s say you are outside in the sunlight looking into a torch-lit cave. From this position, you
most likely cannot see anything inside the cave, and it appears dark. If you flip the situation
around and you are inside the cave looking out, you can see the inside of the cave fine, but
the outside appears overly bright, and you cannot see much of what is out there. The reason
behind this phenomenon is that both cameras and the human eye can only see a certain
range of brightness, and both have exposure control mechanisms, which control the
amount of light energy that can be seen based on the average light of their surroundings.

Another example is putting an object between the viewer and a bright source of light. In
this case, it seems as if the object is overcome by the light, even though it should normally
block the light out. This is because the bright light tends to oversaturate the light receiver,
causing some of the light energy to spread onto anything else in your field of vision.

As you can see from these examples, taking light intensity into account can be a strong fac-
tor in creating more realistic and immersive renderings. Because of this, many studies have
been done on the phenomenon called high dynamic range, or HDR. In this chapter, you will
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learn about this effect and its implications. You will also learn a few techniques that can be
used to re-create this phenomenon on today’s and tomorrow’s rendering hardware.

What Is High Dynamic Range?
High dynamic range is the science of recognizing the different intensity levels of light.
Under normal rendering circumstances, where the average level of lighting is similar
throughout the scene, eight bits of color precision are enough to represent the different
colors and light intensities. However, in real life, there are many situations where the lev-
els of lighting vary significantly throughout the scene, leading to a scenario where there
isn’t enough precision to represent all the phenomena that occur from differences in
intensities.

The general process used in HDR rendering is simple and involves the use of render tar-
gets like the ones used in previous chapters. This is illustrated in Figure 8.1.

Glare
Probably the most common effect that comes out of bright intensity light is the glare
effect. A bright source of light exhibits a blooming effect, where it can even take over
neighboring regions that stand between the light and the receiver.

This effect is caused by the way the human eye and photography equipment work; excess
lighting energy affects not only a particular point on the receiver but also neighboring
points. In fact, the excess light energy leaks onto its surroundings, creating a glow-like
effect often referred to as glare, or blooming.

In the past, this effect was reproduced using billboard polygons on top of the source of
light with the clever use of alpha blending. This approach is simple and effective but 
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Figure 8.1  Diagram of the general process used to render high
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suffers from one major shortcoming. It cannot account for the varying intensities that
occur when your source of light is partially occluded. Later in this chapter, I will show you
how this effect can be accomplished with blur filters and render targets with proper high-
dynamic range considerations.

There is another side effect worth mentioning that comes out of this oversaturation of the
receiver. Because a bright source of light overexcites the receiver, once the bright light goes
away, it takes some time for the receiver to go back to its normal state. This is the phe-
nomenon that occurs when you see a white blob for a while after seeing a bright flash of
light. This effect will not be implemented in this chapter, but it is analogous to setting up
an intensity-based motion blur filter, where the current image affects subsequent images
while the excitation dissipates.

Streaks
You may have noticed when driving in a car that sometimes street lights and headlights
seem to have a star-like glow around them. This phenomenon is generally due to internal
reflections and refractions caused by microscopic scratches on the glass surface of the
camera lens. The same thing happens through your car windshield because it is not a well
polished surface.

Later in this chapter, I will explain how you can re-create this effect using specifically
designed blur filters. These filters blur the bright portions of the render target in a diago-
nal manner instead of the standard way it has been done with the regular blur filters.

Lens Flares
Lens flares, or ghosts, are commonly seen effects when you see film or photography of a
bright source of light such as the sun. This is probably one of the first HDR effects ever
used in video games. This phenomenon comes from the fact that the bright light source
is reflected between the different lenses of a camera, creating ghost images of the bright
lights.

Video games have reproduced this effect by creating fake billboard geometry, placed suit-
ably depending on where the source of light is. In this chapter, you will learn how to
generically reproduce this with proper filters.

A Few HDR Basics
Before you get started on discovering how to re-create all the high dynamic range effects
discussed earlier, we have to look at a few basic topics that will come in handy. These top-
ics range from the use of floating-point textures to exposure control.
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What About Floating-Point Textures?
The main reason behind the introduction of the new floating-point textures is to enable
support for features that require a wider range of values and precisions than that offered
by regular eight-bit textures. High dynamic range rendering is a prime example of where
such high-precision textures can be used.

n o t e

Because floating-point textures are not yet widely supported, it is likely you will have to use the
Hardware Emulation Layer (HEL) mode in RenderMonkey to develop the following high dynamic
range shader. Later in this chapter, you will learn how to use regular render targets to estimate
some of the HDR effects.

Some hardware implementations do not support bilinear filtering when using floating-point tex-
tures. If you have such hardware, you might need to switch to software emulation to get proper
results from the HDR shaders developed in this chapter.

Floating-point textures come in two flavors. In fact, you can elect to use either a 16- or 
32-bit precision texture. Although 32 bits offer great precision, they also require twice the
memory and bandwidth. What this means for you is that the color values in a floating-
point texture are represented in a way that enables you to represent any numerical value.
Because HDR does not require such a great range, 16-bit textures will be used for the ren-
der targets throughout this chapter, especially the A16R16G16B16 format.

Because floating-point textures are ideal for high dynamic range rendering, it makes sense
to show you the basic techniques using these high-precision textures. If your hardware
does not support them, however, you can use software emulation. Later in this chapter,
you’ll learn how to use non-floating-point textures to approximate the same effects.

Exposure Control: The First Step
The first thing to consider when dealing with high dynamic range is exposure control.
Both the human eye and cameras need to be able to adjust to different lighting conditions.
You do not wish to have a bright outdoor scene being washed out and an indoor scene
being totally dark. This is why, for example, the iris of the human eye adjusts to different
lighting environments.

In rendering high dynamic range scenery, you need a similar mechanism to control the
average lighting intensity on your scene. This mechanism is commonly called exposure
control. The framework shader introduced here includes a basic scene with a background
and teapot object and incorporates the needed components to handle exposure control.

Because we want to develop a simple shader with an environment and an object, we’ll start
by using the shader_1.rfx template developed in Chapter 7. The first step to make this
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shader HDR-ready is to add some brightness to the scene. For this example, we will 
be adding HDR information to the environment map.

The ideal solution for this would be to adjust or create the environment as a floating-
texture that contains full brightness information for the scene. Although this is doable,
few software solutions are available to do such a task at the moment. An easier solution is
to take the current environment map and use the alpha channel as a brightness multiplier.
A 0 alpha indicates the lowest brightness level, and 1 is the maximum intensity. You would
then use this value from the alpha channel in your rendering to multiply with the color
intensities, essentially creating a higher range of colors than normally available.

Using image editing software, such as Adobe Photoshop, you can add alpha values to your
environment map so that brighter components, such as the sun, have a greater value in
their alpha channel. Figure 8.2 shows the snow environment side-by-side with its HDR
alpha channel.

n o t e

For more information on how to build high dynamic range environment maps, you can refer to Paul
Debevec’s high dynamic range imaging website at: http://www.debevec.org.

With a high dynamic range environment map, the first step needed to create an HDR
shader is to convert the render targets to use floating-point textures. To do so, simply 
double-click on every target and change the texture format to A16R16G16B16F:

The next step is to use the alpha channel from the environment map to calculate the real
HDR values. This is done by multiplying the environment color by the alpha channel
when each object is rendered, considering the alpha value as being within the zero to 64
range. This leads to the following pixel shader code snippet:

color = color * (1.0+(color.a*64.0));
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This little piece of shader code takes the alpha value from a zero to one range and converts
this value to an integer multiplier in the range of one to 256. This value is then used as a
multiplier for the incoming color values from the environment map.

The only aspect missing in this shader is exposure control. For this, you first need a vari-
able to define the exposure value. Create a new variable called Exposure_Level, which is of
type SCALAR. This value controls the exposure by serving as a scaling factor for the render
target colors when it is copied to the screen buffer.

For this, you need to modify the pixel shader we developed earlier to scale down the val-
ues based on the exposure value. This change yields the following code:

sampler Texture0;
float4 ps_main(float3 dir: TEXCOORD0) : COLOR
{

// Read texture and determine HDR color based on alpha
// channel and exposure level
float4 color = texCUBE(Environment, dir);
return color * ((1.0+(color.a*64.0))* Exposure_Level);

}

With this shader, you can now see your HDR environment being rendered. Try different
values of exposure control and see how the scene changes. Figure 8.3 shows different ren-
dered outputs for different exposure values.

The complete version of this shader is included on the CD-ROM as shader_1.rfx.
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A Note on Automatic Exposure Control
The human eye adjusts its iris automatically to adapt to the surrounding light. This is a
behavior you might want to emulate in your rendering.

Automatic exposure control aims to adjust the average brightness of the scene. The idea
is that the average brightness of the scene should be around 0.5 because the displayable
intensity range is from zero to one. If the average brightness is known, the exposure value
can be determined with

Exposure = 0.5 / Average_Brightness;

Keep in mind that you wish the exposure to slowly adapt and not change instantaneously.
To do this, you could use the following code:

Exposure = lerp(Exposure, 0.5 / Average_Brightness, Exposure_Adjust_Speed);

You need to determine the average brightness of the scene, which isn’t an easy task. One
way you can do it within a DirectX or OpenGL application is to lock the texture and cal-
culate the average procedurally by going through all the pixels and manually computing
the average. However, on most hardware, this has severe performance implications.

Another approach to approximate the same result is to use render targets to compute the
average by taking advantage of the rendering hardware. If you have a successive set of ren-
derable textures, each one being half the size of the preceding one, you can use a simple
box filter to copy the initial scene from render target to render target. After you reach a
one-by-one render target, the single pixel remaining will be the average value for the ini-
tial scene. You can then use this final one-pixel texture as an input to your shader to do
your automatic exposure control.

Time for Some High Dynamic Range Effects
Now that you know a few of the important basics required to implement high dynamic
range effects, it is time for the meat of this chapter. Over the next few sections, I will teach
you how to implement most of the common HDR effects, including glare, lens flare, and
streaks.

Your First HDR Shader: The Glare!
One of the most commonly seen high dynamic range effects is the glare, or glow, or even
bloom . . . In this section, I will show you how to create a shader to emulate this effect in
an easy to use way.

The glare phenomenon is caused by the energy from a bright source of light not only excit-
ing the area it contacts but also leaking onto neighboring areas. Because of this leaking, this
phenomenon can easily be simulated using a properly selected sequence of blur filters.
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The first aspect to consider is which blur filter to use. Because you will want the blurring
to be smooth and consistent, a 9-samples Gauss blur filter will do fine. You’ll recall that
we used this filter in Chapter 7. The other advantage to using this Gauss filter is that you
can control the blurriness of the output by deciding in how many passes you will apply it
to your scene.

Because you wish to have the scene sufficiently blurred and to lessen the impact on the
graphics processor, all the glare blurs will be done on a 1/4-by-1/4 size render target.
When enough blur has been applied to the original render target, the only thing needed
is to additively blend this blurred image onto the screen in a way where only the brightest
parts show up.

n o t e

Because RenderMonkey does not offer the functionality to select a render target of a size that is
proportional to the size of the screen, you can approximate by making an estimation—which
should be sufficient—and setting this value manually in RenderMonkey.

Starting with the blur filter, the use of floating-point textures has no real impact, and the
pixel shader for a specific blurring pass should be as follows:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0; 
const float4 samples[9] = {

-1.0, 1.0, 0, 1.0/16.0,
-1.0, 1.0, 0, 1.0/16.0,
1.0, -1.0, 0, 1.0/16.0,
1.0, 1.0, 0, 1.0/16.0,
-1.0, 0.0, 0, 2.0/16.0,
1.0, 0.0, 0, 2.0/16.0,
0.0, -1.0, 0, 2.0/16.0,
0.0, 1.0, 0, 2.0/16.0,
0.0, 0.0, 0, 4.0/16.0

};

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 color = float4(0,0,0,0);

// Sample and output the averaged colors
for(int i=0;i<9;i++)
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{
float4 col = samples[i].w*tex2D(Texture0,texCoord+

float2(samples[i].x*viewport_inv_width,
samples[i].y*viewport_inv_height));

color += col;
}
return color;

}

The next consideration is how many blurring passes are needed to get a good result. This
is essentially a trial and error type of task. To save you time, I have included results for dif-
ferent numbers of blur passes in Figure 8.4.

Because a single blur pass isn’t enough to get the whole blurring task done, you need to
repeat the process multiple times. For this shader, I have done six passes, keeping the blur
for the past two blurring passes. These intermediate blurring results will be used within
the glare shader a little later. Keep in mind that you need to create multiple render targets
to account for this and for the intermediate results needed.
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The last missing component to this shader is the final pass where the blurred and regular
scene render targets are combined. Although this could be done as separate alpha blend-
ing passes for each of our source textures, the easiest way to do this under a pixel shader
2.0-compatible configuration is to sample both render targets in a single pass and use the
pixel shader code.

To combine the three blurred versions of your HDR render target, you simply need to
combine the values within the pixel shader. To do this, you must define three constants
named Glow_Factor, Glow_Factor2, and Glow_Factor3. These variables determine the contri-
bution of each blurred render target. The following pixel shader code shows how this can
be done:

float Glow_Factor;
float Glow_Factor2;
float Glow_Factor3;
sampler Texture0;
sampler Texture1;
sampler Texture2; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample 3 glow blurring levels and combine them together
return

float4((tex2D(Texture0,texCoord).xyz)*Glow_Factor,1.0) +
float4((tex2D(Texture1,texCoord).xyz)*Glow_Factor2,0) +
float4((tex2D(Texture2,texCoord).xyz)*Glow_Factor3,0);

}

The final rendering results for the shader are
shown in Figure 8.5. The final version of this
shader is included on the CD-ROM as
shader_2.rfx. In the first exercise at the end of
this chapter, you will be invited to expand on
this shader by using a more complex blur filter
than a 9-sample Gauss filter.
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Time for Some Streaking!
You have probably noticed a star-shaped pattern through your car’s windshield that
occurs when driving at night. This effect is the result of tiny scratches in the surface of the
glass, which cause light to reflect and refract on the surface. The physics behind this phe-
nomenon is fairly complex, but it isn’t necessary for our purposes to discuss the underly-
ing cause. We will just develop an approximation, which should produce sufficiently
convincing results.

To estimate this effect, you need to create a star pattern. This can be achieved by using a
specific blur filter, which acts in a specific direction, causing a streak in that direction. This
filter is simple and involves the use of four samples, which are taken along a specific diag-
onal. Figure 8.6 illustrates how this filter works.

As you can see from the figure, the position of the sample for each pass is taken at an off-
set that is proportional to the rendering pass and the sample number. Also, each sample
has a weight of blurFactor, which is raised to a power that is proportional to the sample
number and pass. This allows you to attribute less weight to samples that are farther from
the pixel you are rendering. This combination allows the creation of a filter that creates a
progressively longer streak in a specific direction with each pass. For example, with one
pass, the streak would be 4 pixels long, and with two passes, it would be 16 pixels long.

Translating this basic filter into a pixel shader is simple using the basic array-based
approach taken with the other blur filters. Keep in mind that you need the blurFactor and
offsetFactor variables to control the filter for each pass. The result should be a pixel shader
similar to the following:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0; 
const float  blurFactor = 0.96;
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const float  offsetFactor = 1;
const float4 samples[4] = {

0.0,  -0.0,   0,   0,
1.0,  -1.0,   0,   1,
2.0,  -2.0,   0,   2,
3.0,  -3.0,   0,   3

};

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 color = float4(0,0,0,0);

// Sample and output the averaged colors
for(int i=0;i<4;i++)
{

float4 col = pow(blurFactor,offsetFactor*samples[i].w)*
tex2D(Texture0,texCoord+
offsetFactor*float2(samples[i].x*viewport_inv_width,
samples[i].y*viewport_inv_height));

color += col;
}
return color;

}

Figure 8.7 shows the blurred results for a single streak.
You need to do the same process for all four directions by
changing the signs in the filter table and putting in the
suitable offsetFactor. Then you only need to combine the
four streaks in a way similar to the Glare shader. Note that
this time you will need a single glow factor variable
because each streak has the same combination. You may
also wish to reduce the alpha blending on the final result
so it does not oversaturate the scene. Doing so gives the
following shader code:

float Glow_Factor;
sampler Texture0;
sampler Texture1;
sampler Texture2;
sampler Texture3; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Combine 4 streak directions
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return
min(1.0,
float4((tex2D(Texture0,texCoord).xyz)*Glow_Factor,0.15) +
float4((tex2D(Texture1,texCoord).xyz)*Glow_Factor,0.15) +
float4((tex2D(Texture2,texCoord).xyz)*Glow_Factor,0.15) +
float4((tex2D(Texture3,texCoord).xyz)*Glow_Factor,0.15)
);

}

The final rendering results for the shader are
shown in Figure 8.8. Also note that the final
version of this shader is included on the CD-
ROM as shader_3.rfx.

Lens Flare Free-for-All
The last of the high dynamic range effects
worth exploring is the lens flare effect, also
called ghost. This effect comes from bright
light reflecting between the lenses of the
camera, which creates ghost images of
the bright components of the image. In this
section, I will show how this effect can be 
re-created with the proper shader code.

Before you write any shader, you need to
understand how this effect happens in the
first place. Because lens flares originate from reflections between lenses, you need to cre-
ate mirror images and combine them. The first thing you need to consider is that lenses
make rays converge, which has the side effect of creating upside-down mirror images.

With that in mind, you must be able to access render targets in a way that can be scaled
and flipped. This can easily be done by changing the way the texture coordinates are
passed to the pixel shader. Keeping in mind that a texture is centered around (0.5,0.5), you
can scale and flip a texture by using the following vertex shader code:

texCoord = (texCoord-0.5)*(Scale) + 0.5;

From this code, you can see that the Scale variable controls the scale of the texture. If you
wish to flip the texture, you simply need to input a negative scale to this equation.

n o t e

Keep in mind that because scaling the texture can lead to accesses outside of the texture, you need
to set the texture addressing state to CLAMP to avoid repeating the render target.
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For the effect to look good, you should repeat the same process multiple times. Here, we’ll
be doing it four times for each pass. You will also need to pick out various scale factors to
use. In this example, I have used 2.0, –2.0, 0.6, and –0.6. You may wish to experiment and
pick your own values.

Making these adjustments to the vertex shader yields the following code:

float4x4 view_proj_matrix; 
struct VS_OUTPUT
{

float4 Pos: POSITION;
float2 texCoord:  TEXCOORD0;
float2 texCoord1: TEXCOORD1;
float2 texCoord2: TEXCOORD2;
float2 texCoord3: TEXCOORD3;
float2 texCoord4: TEXCOORD4;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, 0, 1);

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
float2 texCoord;
texCoord.x = 0.5 * (1 + Pos.x - 1/128);
texCoord.y = 0.5 * (1 - Pos.y - 1/128);
Out.texCoord = texCoord;

// Compute the scaled texture coordinates for the ghost images
Out.texCoord1 = (texCoord-0.5)*(-2.0) + 0.5;
Out.texCoord2 = (texCoord-0.5)*(2.0) + 0.5;
Out.texCoord3 = (texCoord-0.5)*(-0.6) + 0.5;
Out.texCoord4 = (texCoord-0.5)*(0.6) + 0.5;

return Out;
}

The pixel shader side of this effect is essentially a matter of sampling the texture four times
and combining the results. There is one little issue, however, that is a result of the scaling.
If you simply sample the texture four times, you end up with hard borders on the edges
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of the render target. To remove this effect, you must apply a cir-
cular mask, like the one shown in Figure 8.9, which masks out
the pixels on the edges.

With this, you need to sample four render targets and four
mask values. The mask values are modulated by the render tar-
get color for each sample, and the final results are added
together and scaled by Glow_Factor. This factor helps control the
intensity of the glow effect and is determined through experi-
mentation. Applying these changes to the pixel shader yields
the following code:

float viewport_inv_height;
float viewport_inv_width;
float Glow_Factor;
sampler Texture0;
sampler Texture1; 
float4 ps_main(float2 texCoord:  TEXCOORD0,

float2 texCoord1: TEXCOORD1,
float2 texCoord2: TEXCOORD2,
float2 texCoord3: TEXCOORD3,
float2 texCoord4: TEXCOORD4) : COLOR

{
// Sample all ghost pictures
float4 col1 = tex2D(Texture0, texCoord1)*tex2D(Texture1, texCoord1).a;
float4 col2 = tex2D(Texture0, texCoord2)*tex2D(Texture1, texCoord2).a;
float4 col3 = tex2D(Texture0, texCoord3)*tex2D(Texture1, texCoord3).a;
float4 col4 = tex2D(Texture0, texCoord4)*tex2D(Texture1, texCoord4).a;

// Combine the ghost images together
return (col1+col2+col3+col4)*Glow_Factor;

}

Because you want multiple ghosts, you must repeat this process a second time using the
result from the first pass as the source of the following pass. The two passes combined
yield 16 ghost images, which should be plenty.

The last step needed is to render the results onto your scene. This can be done through the
use of alpha blending and the following pixel shader code:

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

return float4((tex2D(Texture0,texCoord).xyz),0.8);
}
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With these changes, you can compile the shaders and see the results. The final rendering
results for the shader are shown in Figure 8.10. Also note that the final version of this
shader is included on the CD-ROM as shader_4.rfx.

Putting It All Together
Putting all the effects together is simply a matter of combining all the render targets and
render passes of each individual effect. This can be done with the Copy and Paste options
on the right-click menu.

Beyond this, all that is needed is a new final pixel shader that takes the results of each indi-
vidual effect and combines them. The following pixel shader code shows how this can be
done:

float Streak_Factor;
float Ghost_Factor;
float Glow_Factor;
float Glow_Factor2;
float Glow_Factor3;
sampler Texture0;
sampler Texture1;
sampler Texture2;
sampler Texture3;
sampler Texture4;
sampler Texture5;
sampler Texture6;
sampler Texture7; 
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float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col;

// Glow
col = float4((tex2D(Texture1,texCoord).xyz)*Glow_Factor,1.0) +

float4((tex2D(Texture2,texCoord).xyz)*Glow_Factor2,0) +
float4((tex2D(Texture3,texCoord).xyz)*Glow_Factor3,0);

// Ghost
col += float4((tex2D(Texture0,texCoord).xyz),0);

// Streak
col +=

float4((tex2D(Texture4,texCoord).xyz)*Streak_Factor,0) +
float4((tex2D(Texture5,texCoord).xyz)*Streak_Factor,0) +
float4((tex2D(Texture6,texCoord).xyz)*Streak_Factor,0) +
float4((tex2D(Texture7,texCoord).xyz)*Streak_Factor,0);

return col;
}

This is all that is needed to get this working. You may need to adjust the different variables
so that all of the effects blend well together. You can see a tuned version of the output in
Figure 8.11. This shader is included on the CD-ROM as shader_5.rfx.
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Solutions for Today’s Hardware
Although the use of floating-point textures and render targets is the ideal way of imple-
menting high dynamic range effects, it is not necessarily well suited to today’s hardware.
At the time of this writing, support for such features is sparse, and its speed is not so good.
Although in the future, floating-point textures will be the way to go, you need a solution
that works on most of today’s hardware architectures.

Because you cannot use floating-point textures, you need a way to represent light inten-
sity with less precision. If you are willing to make the concession that all the color com-
ponents are at the same intensity level, you can use the alpha channel of your render
targets to carry the overall brightness. In other words, the alpha channel will contain a
multiplier to be applied to all the color components. This is similar to the way the bright-
ness information was encoded into the environment map earlier in this chapter.

This approach has still another issue. Because the alpha channel values are represented in
a zero to one range, you need to redefine what range these values correspond to. For this
example, I will assume the range of alpha values is zero to 64, which should give sufficient
intensity range and fractional precision. This is simply a matter of multiplying the values
from the alpha channel by 64 before using them.

With this basic knowledge, you can now convert the glare or bloom effect to make use of
this new approach. Although it may seem like a complex task, it is easier than it looks.
Because the glare blurring filters blur both the alpha and the color components of the ren-
der targets, there is no need to take any special consideration for this new approach. In
fact, the only changes needed are making sure the render targets are of A8R8G8B8 format
and changing the object rendering passes so that the intensity values are scaled down to
fit within the alpha channel. The pixel shader code for the object rendering pass becomes
the following:

float Exposure_Level;
sampler Environment;
float4 ps_main(float3 dir: TEXCOORD0) : COLOR
{

float4 color = texCUBE(Environment, dir);
return float4(color.rgb,((1.0+(color.a*64.0))* Exposure_Level)/64.0);

}

With this, no other changes are needed to any of the shaders to do the effects. The only
exception to this is the final pass where you will need to make modifications to decode the
intensity of the pixel. This is done by taking the zero to one alpha value and multiplying
it by 64 and using this value to scale the incoming color values. The resulting pixel shader
code is as follows:

float Glow_Factor;
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float Glow_Factor2;
float Glow_Factor3;
sampler Texture0;
sampler Texture1;
sampler Texture2; 
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample 3 glow blurring levels and combine them together
float4 col1 = tex2D(Texture0,texCoord);
float4 col2 = tex2D(Texture1,texCoord);
float4 col3 = tex2D(Texture2,texCoord);

// Mix the three glows together
return

float4(col1.rgb*(col1.a*64.0)*Glow_Factor,1.0) +
float4(col2.rgb*(col2.a*64.0)*Glow_Factor2,0.0) +
float4(col3.rgb*(col3.a*64.0)*Glow_Factor3,0.0);

}

As you can see in Figure 8.12, the rendering results are similar to the one obtained earlier
in this chapter. I have also included this shader on the CD-ROM as shader_6.rfx. You will
be invited in the second exercise at the end of this chapter to apply the same process to the
streaking shader developed earlier in the chapter.
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Figure 8.12  Rendering the final HDR shader
using non-floating-point textures.
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It’s Your Turn!
High dynamic range is one of the effects that can add so much realism to your scene. It is
now your turn to learn a little more on the topic of HDR through a couple of exercises.
The solutions to these exercises can be found in Appendix D.

Exercise 1: USING A BIG FILTER
For this first exercise, I invite you to improve on the glare filter developed in this chapter.
Your task is simple: take the shader and use the 49-samples Gauss filter used in Chapter 7
instead of the 9-samples filter. This will involve changing the glare filter passes and deter-
mining the appropriate number of blur passes needed.

Exercise 2: STREAKING ON TODAY’S HARDWARE
Throughout this chapter, I have demonstrated how the glare HDR effect could be accom-
plished through the use of non-floating-point textures. For this exercise, I invite you to
use the same process for the floating-point streaking effect developed earlier.

What’s Next?
High dynamic range, or HDR, is a great way to enhance your renderings. Instead of tak-
ing into account color only, now you can account for the intensity of light. This enables
you to create a richer environment and take into account the wide range of lighting that
occurs in real life.

At this point, we have covered many screen-based effects. Such effects are powerful in their
ease of use and visual appeal.

In the next chapter, I will be covering the topic of lighting. From the basics to more com-
plex approaches, you will explore how to use light to create a much richer environment
for your renderings.
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In Part II, “Screen Effects,” you learned how simple screen-based effects can be

used to achieve stunning graphics and enhance the realism of your render-

ings. One drawback with these techniques is that they only focus on improv-

ing the quality of something that has already been rendered. It is now time to start

focusing on making the objects look better as you render them in the first place.

In Part III, you’ll learn several techniques that can be used to improve the quality

of your objects. Lighting, discussed in Chapters 9,“May There Be Light,” 10,“Shiny

Little Pixels,” and 11, “Mirror, Mirror, On the Wall,” is probably one of the most

important visual cues and can do wonders for your graphics. In those chapters you

will explore many topics, including basic lighting information, per-vertex lighting,

per-pixel lighting, and even bumpmapping.

In Chapters 12, “Not All Materials Are the Same,” 13, “Building Materials from

Scratch,” and 14, “Why Does It Always Need to Look Real?,” you will explore the

topic of materials. Although textures and lighting may look good, some materials

have different behaviors, and exploring techniques to reproduce this can yield

stunningly realistic results. Here you will learn about techniques such as BRDFs

and procedural materials.

Finally, you will learn how fogging and animations can make your scene even 

livelier.
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May There Be Light

chapter 9

In this chapter, you will learn how lighting can be applied to your geometry. You will
start with some theory of how lighting works and explore some of the basic types of
lights and approaches taken in computer graphics.

Later, you will learn how to take advantage of this knowledge to apply lighting to your
object. During this chapter, I will show you how you can light your objects in both a per-
vertex and per-pixel way.

Of Light and Magic
People tend to underestimate the importance of lights. As a matter of fact, if there wasn’t
any light, there would not be any world to see. When you see an object, what you see is
not the object itself but the light that is reflected off it. Rendering your scene with proper
lighting not only makes your objects visible but ensures a much greater realism.

In this chapter, you will learn the basics and the essentials of lighting, from the physical
basics to actual algorithms and implementations. I will focus only on per-vertex lighting
in this chapter. In the following chapters, I will show you how these approaches can be
expanded to be used with per-pixel lighting and explore even more approaches such as
bumpmapping and Bi-Directional Refractance Distribution Functions (BRDFs).
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What Makes Light in the First Place
Let’s examine how you perceive an object’s color. The first thing you need is a source of
illumination. This source of light has a color, intensity, and position. The light can be from
several different sources, such as an area light, sunlight, or even an off-the-shelf light bulb.

This source of light emits some light that will hit your object. But what is light in the first
place? For a long time, there was great debate as to whether light was a wave, like sound,
or a particle, like an electron. Then Albert Einstein came along and solved the debate. He
proved that light was both a particle and a wave at the same time. As you can see from 
Figure 9.1, light is a particle (a photon) that travels along a wave.

Unlike radio waves, light cannot travel through most opaque solid objects, because the
objects actually block the particles. On the other hand, the color of light comes from a
wave-like phenomenon, which is determined by the frequency of the light. With this in
mind, once the light particle/wave has left the light source, it travels through space until it
hits your object, or more precisely its surface.

When light hits a surface of any type, two phenomena happen. The light directly interacts
with the surface. There, light is reflected in a way which is specific to the properties of the
material of the surface. Each material has specific properties that are related to the struc-
ture of the material. For example, a polished metal surface tends to directly reflect the
incident light, while a matte finish wall diffuses the light in many directions.

The second phenomenon is what happens to light when it is absorbed, transmitted, and
scattered within the surface. For example, glass is mostly translucent and lets most of the
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Figure 9.1  Illustration of how light acts as both a particle and a wave.
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light through. On the other hand, clouds, which may seem opaque, actually scatter light
in many directions as it passes through their vapor surface.

Materials are various, and their behaviors differ from one to another. However, in an
attempt to generalize lighting so it could be rendered efficiently, several different lighting
phenomena have been identified. Although the following list summarizes them, keep in
mind that this is a simple generalization, and I will discuss other techniques later on.

■ Ambient lighting: This is a gross approximation of the total level of lighting in a
scene. In reality, there is no such thing because the ambient lighting level comes
from a multitude of discrete lights. However, this serves as a good approximation
that can help to significantly reduce the number of lights to consider within a par-
ticular scene. Ambient lighting generally manifests itself as a constant-colored light
that affects the object uniformly.

■ Diffuse lighting: Materials with a rough surface exhibit what is called diffuse light-
ing. The surface’s microscopic roughness has the effect of reflecting incoming light
uniformly in all directions. This causes the perceived lighting to be the same from
any viewing angle.

■ Specular lighting: When the surface of a material is smooth, you will observe 
what is called specular lighting. In this case, light reflects off the surface in a non-
uniform way. This means that for specular lighting, the light intensity not only
depends on the light-to-surface angle but also on the viewing angle.

To put things into perspective, you must understand what happens on the surface when
light hits it. Both the surface and the light have a color expressed in terms of red, green,
and blue. What your shaders will do is calculate the intensity of the light source at a par-
ticular point on the surface and determine the reflected color through modulation. Figure
9.2 illustrates this process.
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Figure 9.2  How light color and surface color are modulated
together.
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You need to follow a few basic steps when creating a shader. First of all, you need to deter-
mine the overall ambient lighting for a scene. This is usually a constant value that is deter-
mined ahead of time, but in more complex scenes, you may want to vary the intensity and
color of the ambient lighting in relation to the position of an object.

The second step is to determine the lighting contribution of each of the individual lights
in your scene. For each of them, you need to find out its intensity, which is usually based
on angle, distance, and color. This value is a combination of a diffuse term and a specular
term and is dependent on the surface properties of the material you are rendering. Once
you have determined both values, it is simply of matter of adding them together and mod-
ulating the resulting color with the color of the surface.

Keep in mind that this is a simplistic representation of materials and lighting. There are
other types of surface interactions that are worth considering. For example, a surface that
is not perfectly opaque, such as skin, exhibits a scattering phenomenon where some of the
incoming light is absorbed and then re-emitted. Another example is a brushed metal sur-
face that is rough on a macroscopic level, and the basic concept of diffuse lighting isn’t
enough. In such cases, you might need to account for such phenomena by using Bi-Direc-
tional Refractance Distribution Functions (BRDFs).

Although I will cover some of these topics later on in this book, the following sections sur-
vey some of the most common material phenomena. Keep in mind that the following sec-
tions are intended as an introduction to the topic, and no shader code will be developed.

Refraction

As you know, not all materials are opaque. Glass, for example, reflects some of the light
hitting its surface but also lets a significant number of rays through. As discussed in an
earlier chapter, the rays that go through the surface are affected by the difference in den-
sity between the surfaces.

The difference of density between the air and the surface of the material causes the rays of
light going through the surface to be deviated, as shown in Figure 9.3.

In the previous discussion of refraction, I neglected the color of light in the refraction
equation. The reality is that the actual refraction index is influenced by the frequency of
the rays of light penetrating the surface. Because the color of the light is dependent on its
frequency, light of different colors are refracted differently. This is exactly why prisms cre-
ate rainbows. Figure 9.4 shows how a refraction factors in the frequency of the light and
how the color of a ray of light translates into frequency.

When performing refraction, you may wish to take this into account to improve the result.
Because color is determined in terms of red, green, and blue, you need to approximate the
result by determining an individual refraction index for each color component.
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Sub-Surface Scattering

Most people tend to see the world as either black and white, translucent, or opaque. The
reality is that many materials which seem opaque are actually translucent. Probably one
of the best examples is skin. Although on the surface it appears opaque, it is not! I’m sure
you have at some point put a laser or flashlight on your finger and noticed how you could
see a glow on the other side. For this to happen, some of the light must actually make it
through your finger to the other side.
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Figure 9.3  Illustration of how rays of light are refracted as they
go from the density of air to a surface with a different density.

Figure 9.4  How to factor color into the refraction of light.
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Sub-surface scattering stems from this. For a particular material surface, light is reflected
off the surface, but some of the rays penetrate the surface. As Figure 9.5 shows, the rays
that manage to penetrate the surface either make it through the surface or encounter
other particles within the surface and bounce. Those bouncing rays can potentially head
back towards the surface and remerge at another point.

In essence, with sub-surface scattering, some of the light hitting the surface can potentially
re-emerge at another point on that surface. With the skin example, such rays pass through
the first layer of skin and meet some particles of flesh or blood. The rays then are tinted
properly for the encountered particles and re-emerge somewhere near their entry point.
This explains both the pinkish tone of skin and why lit skin always tends to exhibit a soft
glow.

BRDFs

Both the specular and diffuse lighting models assume a predictable distribution of
reflected light with the relationship between the incident light angle and the angle of the
viewer. Unfortunately, most materials do not follow this pattern. One classic example of
materials that break the rules is velvet.

With velvet, light that comes in is not reflected directly. Because the material is composed of
a multitude of microscopic brushed hairs, light is not reflected in relationship to the surface
normal, but in a way that is dependent on the angle of the hairs, as shown in Figure 9.6.
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Figure 9.5  Illustration of how sub-surface scattering happens.
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As you can see, there is a direct relationship between the angle of the incoming light and
how it is reflected. However, this reflection does not follow the standard paradigms of
specular and diffuse lighting. Figure 9.7 shows the distribution of reflected light in rela-
tionship to the incident light angle for specular, diffuse, and velvet surfaces.

You can see in Figure 9.7 that BRDFs can be useful in describing the relationship between
the incident light angle and the viewing angle. We’ll examine this phenomenon further in
Chapter 12, “Not All Materials Are the Same.”
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Figure 9.6  How light is reflected off a velvet-like material.

Figure 9.7  Diffuse, specular, and velvet BRDF reflectance
distributions.
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Types of Lights
Although I have focused a lot so far on how light affects surfaces, you also need to con-
sider that the source of light itself has some properties. Lights, by their shapes and prop-
erties, can affect many factors when it comes to rendering. Such factors define how the
light attenuates as a function of distance and the direction in which the rays of light will
be heading.

In this section, you will learn how the standard types of light work and how you can use
them in your shaders. So let’s get started with one of the simplest forms of light, the direc-
tional light.

Directional Light
Directional lights are the simplest form of lighting out there. They do not have a position
and simply assume that all light rays are parallel to each other and heading in the same
direction. You may wonder what kind of light actually behaves like this, and in fact, none
do. A directional light only has the purpose of estimating the case where a source of light
is sufficiently far away. In such a case, you can estimate it by assuming that all rays of light
are parallel to one another.

The best example of this is sunlight. Considering that the sun can be treated as a point
light and that it is located millions of miles away from Earth, rays that hit the surface of
the Earth are almost parallel and can be considered directional light. This concept is
shown in Figure 9.8.
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Figure 9.8  How light rays from the sun can be considered parallel
because of the sun-to-earth distance.
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Another consequence of the fact that a directional light has no position is that it does not
attenuate with distance. The only factors to consider in the end are the light ray’s direc-
tion and the color of the light.

One question that may come to mind is how this light influences the surface. As Figure 9.9
shows, you only need to consider the angle between the light rays and the surface normal.

Knowing this, you can simply find out the intensity of the light on a particular point of
the surface by taking the dot product between the light direction and surface normal and
factoring in the light color. The surface normal represents the direction, which is perpen-
dicular to the surface at a specific point. This would yield the following shader code:

Color = Light_Color * clamp(0, 1, dot( Light_Direction, inNormal ));

n o t e

Take a look at the clamp function used in the angle-based attenuation code for the directional light.
Because the dot product can give a negative result for a surface that faces away from the light, you
need to ensure that you do not get any negative light contributions. The clamp function ensures that
any negative value will be clamped to zero.

This is as simple as it gets! Although no light physically behaves this way in real life, direc-
tional lights are an inexpensive way to create a more rich ambient lighting with an approx-
imation. By considering distant sources of light in such a way, you can have multiple lights
affecting an object at a lesser cost than using point lights.

Although you will be using point lights throughout the chapter, I will invite you in the
first exercise at the end of the chapter to implement a shader making use of directional
lights.
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Figure 9.9  How the intensity of light on a surface relates to
the angle between the light direction and the surface normal.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Point Lights
Most of the light in a scene comes in the form of a light bulb, torch, or similar lighting ele-
ment. When you think about it, most of those sources are small, finite, and located at a
discrete position within your scene. For simplification, you may consider all of them as
being a source of light that is contained as a single discrete point in your scene, therefore,
a point light.

With such lights, rays emerge in a radial fashion (illustrated in Figure 9.10). This means
that any object in any position relative to the light is affected in the same way. Because the
intensity of light on a surface is determined by the relationship between the light rays and
the surface normal, the only extra step to take is to discover the direction of the rays of
light in the first place. This can easily be done by determining the vector from the source
of light to the 3D position of the surface point you are considering. Finding out the angle-
based attenuation for a point light yields the following code:

float3 Light_Direction = normalize( inPos – Light_Position );
float AngleAttn = clamp(0, 1, dot( inNormal, Light_Direction ));

The other consideration with point lights is that the light attenuates based on distance.
The first step is to determine the distance from the surface to the light. This can be done
easily with the following shader code:

Float Distance = length( inPos – Light_Position );

Generally, because of the nature of a point light, light attenuates proportionally to the
square of the distance from the light. However, to allow flexibility within your scene, you
should adjust the light based on three different components: the inverse of the distance,
the distance, and the distance squared. This added flexibility allows you to have full 

Chapter 9   ■ May There Be Light164

Figure 9.10  How rays of light emerge from a point light.
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artistic control and tweak the values as needed by your scene. The reality is that quite
often, it is not a matter of rendering accurately but more so of rendering so it looks con-
vincing.

The following code illustrates how this can be done:

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Distance*Distance )
float DistAttn = clamp(0,1, 1 / (LightAttenuation.x +

LightAttenuation.y * Distance + 
LightAttenuation.z * Distance * Distance ));

Because point lights are so common in rendering, I will be using them later on in this
chapter to illustrate the differences between ambient, diffuse, and specular lighting.

n o t e

At this point, you may wonder what happens if a source of light is occluded, or blocked, by another
object. The reality is that such phenomena are difficult to re-create in real time with simple light
primitives and will be explored in Chapter 17, ”Advanced Lighting,” and Chapter 18, ”Shadowing.”

Spot Lights
Generally speaking, a flashlight behaves just like a point light. However, the light is
restricted to a small cone where light comes out. A spot light is, in essence, a point light
where part of the source is blocked, causing light to be emitted only along a specific cone.
Figure 9.11 explains how a spot light works.
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Figure 9.11  How a spot light works (like a point light
but with a restricted cone of action).
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With this in mind, a spot light behaves in
exactly the same way a point light does. You
only need to consider the angle of the cone
the light comes from. The cone for a spot
light is defined by two angles. The first angle
represents the inner cone, where the light is
at full intensity. The second angle, the outer
cone angle, is the point at which the lighting
ends. For any angle values between the inner
and outer cone, light will fall off with the
equation shown in Figure 9.12.

From this equation, many of the compo-
nents can be replaced with dot products to
improve performance. However, to properly implement this, you need to take advantage
of the conditional statements of the vertex shader 2.0 model. The following code illus-
trates how this can be done:

float LightAngle = dot(Light_Direction, Light_Orientation);
float ConeAttn = 1.0;
if ( LightAngle > Light_InnerCone )

ConeAttn = pow((LightAngle-Light_OuterCone) / 
(Light_InnerCone-Light_OuterCone), Light_ConePower);

Spot lights can be useful occasionally, but they can be significantly expensive to compute.
There are some techniques that can be used, such as projective lights, to simplify the
process.

Area Lights
All the types of lights I have covered depend on the
fact that rays of light originate from a single dis-
crete point. The reality is that no light in the uni-
verse behaves this way, and we have simply been
estimating the results. Even when you consider a
light bulb, light comes from a heated filament that
glows. This filament isn’t a single point in the world
and covers some area.

Obviously, this filament is small and can be well
approximated as a single point. In reality, however,
lighting actually comes from the sum of all the
minuscule points that compose the filament. Figure
9.13 shows how this works.
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Figure 9.12  Spot light cone fall-off equation.

Figure 9.13  Light treated as a set of
discrete points to create an area light.
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Considering this information, all light in a scene is actually a set of area lights, which emit
light from a surface area and not a single point in your world. In essence, this boils down
to considering a set of point lights that represent each element that composes the source
of light.

Obviously, this is too complex and expensive for real-time rendering. But off-line render-
ing approaches, such as radiosity, fully take advantage of this lighting approach. The big
advantage of area lighting is that it can re-create much more realistic environments
because the use of small discrete lights can create a much softer lighting environment and
even create soft shadows where needed. For more information  on radiosity, you should
refer to the Siggraph overview at:

http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_1.htm

Let’s Get Shading
In the following sections, I will implement shaders for ambient, diffuse, and specular
lighting. For the purpose of this chapter, you will be using a simple shader with a single
teapot. I will not go into great detail on how to set it up, but if you need a refresher, I
encourage you to see Chapter 4, “Getting Started, Your First Shaders.”

You will need to create a basic one-pass shader that renders a teapot model. The vertex
shader for this is standard, simply rendering the teapot object in a regular way. The only
difference to consider is that you need to pass color information to the pixel shader
because the lighting color is determined in the vertex shader; this implies that you need
to add a new variable to the output structure. The basic vertex shader to use is as follows:

struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color
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Out.Color = float4(1,1,1,1);

return Out;
}

The pixel shader simply needs to route the color coming in from the vertex shader to the
output of the shader. This gives the following code:

float4 ps_main(float4 inColor: COLOR0) : COLOR 
{

// Simply route the vertex color to the output
return inColor;

}

With this basic shader, you will be able to render all the lights. So let’s get started with a
simple ambient lighting shader.

Ambient Lighting
Ambient light is a simple form of lighting that affects an object uniformly. For you to
implement this shader, you simply need to add the color of the ambient light to the shader
in the form of a COLOR variable named Light_Ambient. After you add this variable, you sim-
ply need to change the vertex shader to output the ambient color to the pixel shader
through the output structure’s Color variable. This can be done with the following vertex
shader code:

float4x4 view_proj_matrix;
float4 Light_Ambient;
struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color
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Out.Color = Light_Ambient;

return Out;
}

Putting it all together and compiling gives the final rendering results shown in Figure 9.14.
Also note that the final version of this shader has been included on the CD-ROM as
shader_1.rfx.

Diffuse Lighting
Now that you have some ambient lighting in the scene, it is time to add a real point light and
calculate its diffuse component. Because a point light has position, color, and distance atten-
uation factors, you need to create the proper variables named Light_Position, Light_Color,
and Light_Attenuation. With these variables, you are now set to create the actual shader.

For this shader, you will put the lighting code in a function called Light_PointDiffuse,
which takes in the light parameters and returns the resulting color. The function takes in
the light position, color, and attenuation, as well as the vertex position and normal. The
major advantage of using a function to compute the lighting is that it allows you to cal-
culate multiple lights without the need to replicate code throughout your shader.

Taking the pieces of code developed earlier for a point light and integrating them into the
vertex shader will give you the following vertex shader code:

float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Position;
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Figure 9.14  Rendering results for the
ambient lighting shader.
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float4 Light1_Attenuation;
float4 Light1_Color;
struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_PointDiffuse(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation)

{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist + 
LightAttenuation.z * Dist * Dist ));

// Compute surface/light angle based attenuation defined as dot(N,L)
// Note : This must be clamped as it may become negative.
float AngleAttn = clamp(0, 1, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * DistAttn * AngleAttn;

}

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

float4 Color;

// Compute light contribution
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Color = Light_PointDiffuse(inPos, inNormal, Light1_Position, 
Light1_Color, Light1_Attenuation);

// Output Final Color
Out.Color = Color;

return Out;
}

With the shader, all you will need to do is set the light attributes, and you should get
results similar to the one shown in Figure 9.15. Also note that the final version of this
shader is included on the CD-ROM as shader_2.rfx.

Specular Lighting
The last component to complete the point lighting shader is the integration of a specular
part to the lighting equation. The major difference with specular lighting is that the light-
ing intensity is not only influenced by the surface-to-light angle but also by the light-to-
viewer angle.

A common way this is implemented is with the half vector. This is essentially the halfway
vector between the view vector and the incident light vector.

The view vector is determined by taking a view position (in this case we’ll assume a vec-
tor at 0,0,10, which is sufficiently far away from the object) and transforming it into object
space. Since the original vector is relative to the camera, transforming it into object space
is simply a matter of applying the inverse of the view matrix, which is contained in the
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inv_view_matrix built-in matrix variable. This object-space view vector can then be added
to the vertex position, thus giving you a vector that goes from the light to the surface of
the object. The following code illustrates how this is done:

EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);

With this EyeVector, you can determine the half vector by combining it with the incident
light vector and then normalizing the result. Because both vectors are normalized to start
with, the result is equivalent to averaging them with (A+B)/2. The following code shows
how you can do this:

HalfVect = normalize(LightDir-EyeVector);

Once you have the half vector, the angle-based light intensity can be determined by com-
puting the dot product between the half vector and the surface normal, and raising the
result to the power of m. Raising the result to a certain power controls the specular expo-
nent of the light. The higher the value, the smaller and sharper the lighting highlight will
be. For this shader, you can use an exponent of 32.

Combining all these elements into a function called Light_PointSpecular gives the follow-
ing vertex shader code:

float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Position;
float4 Light1_Attenuation;
float4 Light1_Color;
float4 view_position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_PointSpecular(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation, 
float3 EyeDir)

{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;
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// Compute half vector
float3 HalfVect = normalize(LightDir-EyeDir);

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist + 
LightAttenuation.z * Dist * Dist ));

float SpecularAttn =  pow( clamp(0, 1,dot(VertNorm, HalfVect)),32);

// Compute final lighting
return LightColor * DistAttn * SpecularAttn;

}

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

float4 Color;

// Determine the eye vector
float3 EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);

// Compute light contribution
Color = Light_PointSpecular(inPos, inNormal, Light1_Position, 

Light1_Color, Light1_Attenuation, 
EyeVector);

// Output Final Color
Out.Color = Color;

return Out;
}

The final rendering results for this shader are shown in Figure 9.16. Also note that the final
version of this shader is included on the CD-ROM as shader_3.rfx.
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Putting It Together
That’s it! Well, not all of it; you still need to put it together into a final shader. This is sim-
ply a matter of combining the code for the ambient, diffuse, and specular lighting into a
single function called Light_Point. Doing so should give you the following vertex shader:

float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Position;
float4 Light1_Attenuation;
float4 Light1_Color;
float4 view_position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_Point(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation, 
float3 EyeDir)
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{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute half vector
float3 HalfVect = normalize(LightDir-EyeDir);

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist + 
LightAttenuation.z * Dist * Dist ));

// Specular
float SpecularAttn =  pow( clamp(0, 1,dot(VertNorm, HalfVect)),32);

// Diffuse
float AngleAttn = clamp(0, 1, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * DistAttn * (SpecularAttn+AngleAttn);

}

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color
float4 Color = Light_Ambient;

// Determine the eye vector
float3 EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);

// Compute light contribution
Color += Light_Point(inPos, inNormal, Light1_Position, 

Light1_Color, Light1_Attenuation, EyeVector);
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// Output Final Color
Out.Color = Color;

return Out;
}

The final rendering results for this complete lighting shader are shown in Figure 9.17. The
final version of this shader is included on the CD-ROM as shader_4.rfx.

I mentioned earlier how light modulates itself with the color of an object. So far, you have
only dealt with the assumption of a white teapot. You can now add a texture to the work-
space and change the pixel shader so that it samples the texture and modulates it with the
resulting light color. The changes required to the pixel shader are as follows:

sampler Texture0;
float4 ps_main(float4 inColor: COLOR0,float2 inTxr: TEXCOORD0) : COLOR 
{

// Simply route the vertex color to the output
return inColor*tex2D(Texture0,inTxr);

}

There you have a final lighting solution with ambient, diffuse, and specular lighting. Fig-
ure 9.18 shows you the results for this shader. Also note that the final version of this shader
is included on the CD-ROM as shader_5.rfx.
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Figure 9.17  Rendering results for your
complete lighting shader.
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It’s Your Turn!
Now that you have a better understanding of the importance of lighting and know some of
the basic approaches taken, it is time to explore your own creativity. In the following exer-
cises, you will expand from shaders developed earlier in this chapter and try out new
approaches. You can find the solutions to these exercises in Appendix D.

Exercise 1: DIRECTION LIGHTS
Throughout this chapter, all the lighting shaders you developed took advantage of point
lights. As described earlier, directional light can often be used to represent distant sources
of light, such as the sun, in a more efficient way than can be achieved with point lights.
For this exercise, I invite you to modify the ambient/diffuse/specular shader developed in
this chapter to use a directional light instead of a point light.

As you develop this shader, you must remember that directional light does not have posi-
tion or attenuation. The only thing of importance for a directional light is its direction.

Exercise 2: ANIMATING LIGHTS
For this second exercise, I invite you to expand on the previously developed ambient/
diffuse/specular shader to animate one of the lights. Taking advantage of the time_0_1
built-in HLSL variable, you can animate both the light’s position and color.

Keep in mind that because you wish to animate the light around the scene object, you
need to do a little math to determine an animating position on a sphere located around
the object. I will not provide any hints on how this can be done; I encourage you to come
up with something on your own.

What’s Next?
In this chapter, you have discovered the importance of lighting. This is something that
people usually take for granted, but the fact is that if it weren’t for light, you wouldn’t see
the world in the first place. You learned in this chapter that you should have a good under-
standing of the basics involved in lighting and some of the approaches taken with today’s
hardware.
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You may have noticed that using per-vertex lighting can give unrealistic results, depend-
ing on the resolution of the mesh you are lighting. This is because the color interpolation
on vertices is done in a linear way where the lighting color does not change in a linear way
because lighting depends mostly on the surface normal and lighting vector. In the next
chapter, you will learn how to improve upon this by implementing per-pixel lighting. You
will also learn how bumpmaps can be used with lighting to re-create small surface details
that can’t easily be represented with geometry.
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179

Shiny Little Pixels

chapter 10

In the previous chapter, you explored the basics of lighting and learned how to apply
these techniques to light the vertices of your objects. Such lighting works well for
highly tessellated objects because of the way colors are interpolated. When it boils

down to lighting your objects precisely, you need to consider lighting them per-pixel.

In this chapter, you will build upon the knowledge you gained in the previous chapter 
to light your objects per-pixel. You will also learn how to take advantage of per-pixel 
lighting to add pixel-level details to your objects by using bumpmaps and normal maps.

Although per-pixel lighting can be more expensive to render, it goes a great way toward
improving the quality of your graphics. So fasten your seat belts and get ready to light
those pixels!

Why Isn’t Vertex Lighting Enough?
When considering lighting, most people think that lighting an object per-vertex is suffi-
cient. This is generally true for highly tessellated objects but fails on complex shapes and
low detail ones. The reason behind this is the way interpolation of colors between vertices
happens.

When you light your object per-vertex, the lighting color is calculated once for each ver-
tex and is then linearly interpolated across the polygon. The reality, however, is that the
lighting values are dependent on the incident light angle, the surface normal, and the
viewer position (for specular lighting). The interpolation of color resulting from the per-
vertex lighting calculations does not give the same results as interpolating each compo-
nent individually and then computing the result for each pixel.
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Imagine the following case where
you have one flat surface being lit
by a single point light. With per-
vertex lighting, the color will be
determined for each vertex and
then interpolated. With per-pixel
lighting, you will interpolate
each component needed for
lighting and then calculate on a
per-pixel basis. Figure 10.1 shows
you an example of the difference
between vertex- and pixel-based
lighting for a simple flat surface.

When dealing with high polygon counts, per-vertex lighting can do well because each indi-
vidual polygon covers little of the screen and each pixel suffers from little interpolation.
However, when dealing with lower detail geometry, pixel-based lighting is the way to go!

Another advantage of per-pixel lighting is the ability to add detail that doesn’t exist in the
original mesh. By using bumpmaps and normal maps, you can add bumpiness to your
geometry on a per-pixel level, which doesn’t exist on the geometry but which creates the
illusion of such detail through the use of proper lighting.

But before you can even consider the more complex uses of pixel-based lighting, you must
start by learning how you can light individual pixels. In the next section, you will learn
how to extend the lighting techniques from the previous chapter for use with pixel-based
lighting.

Basic Pixel Lighting
Now that you know the why behind per-pixel lighting, it is time to discuss the how.
Because the reason for the downfall of per-vertex lighting is its linear interpolation, you
will need to determine which components of lighting are interpolatable.

Based on those determinations, you will be able to move some of the lighting computing
from the vertex shader to the pixel shader to ensure better lighting while keeping the
graphics processor work to a minimum.

In regards to ambient lighting, because it is simply a constant color applied over the whole
object, the results are the same whether it is done for each vertex or pixel. Therefore, I will
not discuss ambient lighting any further in this chapter.
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flat surface lit by a single point light.
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In the next two sections, I will go over both diffuse and specular lighting and help you cre-
ate the new pixel-based lighting shaders. Note that because you will be doing the same
process as done in the previous chapter, you will also use the same base shader.

Diffuse Lighting
Starting with diffuse lighting, you need to decide what lighting components can be inter-
polated and which ones need to be processed per-pixel. From the end to the beginning,
what defines diffuse lighting is the dot product between the surface normal and the light
vector.

This dot product defines the intensity of the lighting, but the results of such an operation
cannot be interpolated properly. Because of this, the dot product needs to be processed for
each pixel and needs to be moved to the pixel shader.

n o t e

Although normals can be interpolated linearly, such interpolation can yield vectors that are not
normalized. To correct this, it is a good idea to renormalize the vector by using the built-in HLSL 
normalize function.

Also keep in mind that throughout this chapter, when I refer to normals, I imply vertex normals,
which generally are represented as the average surface normal for all polygons that share a spe-
cific vertex.

The two components of this dot product are the surface normal and light vector. Vectors
themselves will interpolate correctly when put in on a per-vertex basis. This means you
can calculate them ahead of time for each vertex and pass them on to the pixel shader.

For this to happen, you need to add those two components to the vertex shader output
structure. They can be passed to the pixel shader using TEXCOORD1 and TEXCOORD2. Applying
the modifications yields the following output structure:

struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Normal:   TEXCOORD1;
float3 LightDir: TEXCOORD2;

};

You also need to change the vertex shader to pass those values to the output structure.
Because you are dealing with a single light, it is easier at this point to remove the lighting
function and copy the relevant code in the vs_main function.
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One thing you may have noticed that was not mentioned is the distance-based attenua-
tion. Although the interpolation of this component is not perfect, lights generally have
enough range of action so that small differences in distance don’t make a significant dif-
ference in the result and hence do not need to be computed on a per-pixel basis.

Because this attenuation factor is a single scalar value, the easiest way to pass it to the pixel
shader without wasting another register is to simply make the LightDir vector a float4 and
put this result in the W component of this vector.

Applying all those changes should give you the following vertex shader:

float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Position;
float4 Light1_Attenuation;
float4 Light1_Color;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Normal:   TEXCOORD1;
float4 LightDir: TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Move the normal to the pixel shader
Out.Normal = inNormal;

// Compute and move the light direction to the pixel shader
float4 LightDir;
LightDir.xyz = Light1_Position - inPos;
float Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the distance based attenuation. Distance can be interpolated
// fairly well so we will precompute it on a per-vertex basis.
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LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +
Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

// Output the light direction
Out.LightDir = LightDir;

return Out;
}

On the pixel shader end, the task is simply a matter of taking the incoming vectors and
computing the dot product and the final lighting color. For convenience, the lighting code
can be put in a function called Light_PointDiffuse, as was done before in the per-vertex
lighting shader. So in essence, the lighting computation code is the same as the vertex
shader version.

You also need to add the input parameters to the pixel shader main function, ps_main, so
the interpolated normal and light direction can be read. With all those adjustments, you
should end up with the following pixel shader:

float4 Light1_Color;
float4 Light_PointDiffuse(float4 LightDir,

float3 Normal,
float4 LightColor)

{
// Compute suface/light angle based attenuation defined as dot(N,L)
float AngleAttn = clamp(0, 1, dot(Normal, LightDir.xyz) );

// Compute final lighting (Color * Distance Attenuation *
// Angle Attenuation)
return LightColor * LightDir.w * AngleAttn;

}

float4 ps_main(float3 inNormal:TEXCOORD1,
float4 inLightDir:TEXCOORD2) : COLOR

{
// Compute the lighting contribution for this single light
return Light_PointDiffuse(inLightDir,inNormal,Light1_Color);

}

When you are finished with all the changes, you can compile and check out the results.
Figure 10.2 shows what the rendering result for this shader will look like. The shader is
included on the CD-ROM as shader_1.rfx.
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Specular Lighting
Not too hard yet, huh? Now it is time to tackle the specular lighting shader. The basic
process is the same as that for the diffuse lighting shader. The core of this shader is the dot
product between the light vector and the half vector. As with the diffuse lighting shader,
this computation needs to be done on the pixel shader.

This means that both the light vector and the half vector need to be calculated in the ver-
tex shader and passed to the pixel shader. In the same way as you did with the diffuse light-
ing shader, you need to add the proper variables to the output structure. With these
modifications, the output structure should look as follows:

struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Normal:   TEXCOORD1;
float4 LightDir: TEXCOORD2;
float3 HalfVect: TEXCOORD3;

};

Within the vertex shader code, you need to compute the normal, light vector, half vector,
and distance-based attenuation. This is simply a matter of taking the specular lighting
shader code developed in the previous chapter and applying a few changes. You should
then have the following code:
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diffuse lighting shader.
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float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Position;
float4 Light1_Attenuation;
float4 Light1_Color;
float4 view_position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Normal:   TEXCOORD1;
float4 LightDir: TEXCOORD2;
float3 HalfVect: TEXCOORD3;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Determine the distance from the light to the vertex and the direction
float4 LightDir;
LightDir.xyz = Light1_Position - inPos;
float  Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the per-vertex distance based attenuation
LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +

Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

// Determine the eye vector and the half vector
float3 EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);
Out.HalfVect = normalize(LightDir-EyeVector);

// Output normal and light direction
Out.Normal = inNormal;
Out.LightDir = LightDir;
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return Out;
}

On the pixel shader front, it is simply a matter of creating a function called
Light_PointSpecular, which will take the input vectors and compute the dot product. With
this, you can then consider the lighting color and the distance attenuation. The following
pixel shader code implements all these changes:

float4 Light1_Color;
float4 Light_PointSpecular(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
{

// Compute suface/light angle based attenuation defined as dot(N,L)
// Note : This must be clamped as it may become negative.
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),32);

// Compute final lighting
return LightColor * LightDir.w * SpecularAttn;

}

float4 ps_main(float3 inNormal:TEXCOORD1, float4 LightDir:TEXCOORD2,
float3 HalfVect:TEXCOORD3) : COLOR

{
// Simply route the vertex color to the output
return Light_PointSpecular(inNormal,HalfVect,LightDir,Light1_Color);

}

After all these changes are finished, you
can compile and check the results. Figure
10.3 shows what the rendering result for
this shader will look like. The shader is
included on the CD-ROM as shader_2.rfx.
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Figure 10.3  Rendering results for the per-pixel
specular lighting shader.
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Putting It All Together
Now we will put the components together to get a final lighting shader. From the point of
view of the vertex shader, the per-pixel specular lighting shader computes all the compo-
nents required, and no work is needed.

For the pixel shader, you need to create a new function, Light_Point, which calculates both
the diffuse and specular dot products and then combines the results to determine the final
lighting value. With these simple changes, you should have the following pixel shader:

float4 Light1_Color;
float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
{

// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),32);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * LightDir.w * (SpecularAttn+DiffuseAttn);

}

float4 ps_main(float3 inNormal:TEXCOORD1, float4 LightDir:TEXCOORD2,
float3 HalfVect:TEXCOORD3) : COLOR

{
// Simply route the vertex color to the output
return Light_Point(inNormal,HalfVect,LightDir,Light1_Color);

}

With this pixel shader, the rendering
result should look like that shown in Fig-
ure 10.4. The shader is included on the
CD-ROM as shader_3.rfx.
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Figure 10.4  Results for the combined per-pixel
diffuse and specular shader.
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The only thing missing from this shader is a texture. To add one, simply add a new tex-
ture variable and reference object in your workspace and change the pixel shader to read
in the texture and modulate the result with the lighting color that you just computed.
Applying those changes yields the following pixel shader:

float4 Light1_Color;
float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
{

// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),32);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * LightDir.w * (SpecularAttn+DiffuseAttn);

}

float4 ps_main(float2 inTxr:TEXCOORD0,float3 inNormal:TEXCOORD1,
float4 LightDir:TEXCOORD2,float3 HalfVect:TEXCOORD3) : COLOR

{
// Simply route the vertex color to the output
return tex2D(Texture0,inTxr)*

Light_Point(inNormal,HalfVect,LightDir,Light1_Color);
}

The rendering result for this shader
should look like that shown in 
Figure 10.5. The shader is included
on the CD-ROM as shader_4.rfx.
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Figure 10.5  Results for the combined textured per-
pixel diffuse and specular shader.
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Giving You Goose Bumps
Now that you can light each pixel of your object individually, we can explore the topic of
bumpmapping and normal mapping. Because you are rendering each pixel individually,
what prevents you from adding extra information to each pixel, which can add some extra
details to the geometry?

The reality is that real objects are not just bound by polygons and that details go much
deeper. Imagine a brick wall. Even though you can represent this wall with a simple pla-
nar polygon and texture, bricks have much greater 3D detail, which can’t be represented
by such geometry. Figure 10.6 illustrates this.

All this extra detail could be represented by geometry, but it would create tremendous
numbers of polygons and would be impossible to manage. Another solution to the prob-
lem is to consider the impact of the added detail. Because the extra geometry details are
small, they do not really affect the shape of the object. However, the impact can mostly be
seen on the normal of the surface, as shown in Figure 10.7, which illustrates how normal
detail can be represented on a pixel scale.
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Figure 10.6  Small extra details compared to the flat polygon
representation.

Figure 10.7  How extra details modify the surface normal of the
geometry.
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Now that you are rendering each pixel individually, nothing prevents you from modifying
the normal for each pixel so that it takes into account the added details for this portion of
the object. In the next two sections, I will overview two techniques that can be used to re-
create such micro-details: bumpmapping and normal mapping.

Bumpmapping
Extra geometric details can be represented in a straightfor-
ward manner, which is easily authorable by artists. In this
form, you could create a grayscale texture that represents
the height of each pixel relative to one another, white pixels
being higher than black pixels. Figure 10.8 shows such a
height texture for the stone texture used throughout this
chapter.

Although such a texture is easy to create, it is not so useful
when rendering. You are interested in the surface normal
for a particular pixel and not its height. However, you can
preprocess the height texture to extract a U and V offset for
each pixel. Because the normal at a particular pixel is sim-
ply the slope of the height, you can determine this value
through the equation shown in Figure 10.9.
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Figure 10.8  Height texture
for the stone wall texture.

Figure 10.9  Equation used to determine the surface
normal based on a height map.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Instead of storing the resulting normal with your prepro-
cessing, you can simply discover a U and V offset that rep-
resents the difference of the normalized vector, assuming
you are looking at the texture from the top in 2D. Figure
10.10 shows such a bumpmap texture once it has been pro-
duced from its height map.

n o t e

Because of the nature of both bumpmaps and normal maps,
values stored in the textures are signed. Because the textures
are stored in an unsigned value, you will need to process the
pixels when you sample the texture to bring it back to a signed
form. This can be done with the following: Signed = Unsigned
× 2 – 1.

Such an approach may seem unnatural, but it came forth as the first hardware imple-
mentation because of its simple use of a dot product. Within a pixel shader, all you need
to do is take the interpolated surface normal and offset it by the bumpmap values. This is
similar to what was done  in Chapter 7, “It’s Getting Hot in Here,” when we implemented
the heat haze screen effect.

This is the old way of doing per-pixel lighting; normal maps are the way of the future.
Therefore, we will move straight on to talking about normal maps. Before you can fully
understand how normal maps work, though, you need to learn about the tangent space
coordinate system.

Tangent Space
When you are dealing with normal maps and bumpmaps, each texel refers to the current
surface normal, which is usually either in object space or world space. However, because
you are texturing your object with a texture or bumpmap that isn’t necessarily built for
this object, there is no way for the bumpmap or normal map to specify a new normal
without any knowledge of the surface of the object.

One solution is to ensure that your texture has a relationship with your object and then
to ensure that your normal map or bumpmap refers to the normals in object-space. How-
ever, this is impractical because it prevents texture reuse and needs special texture author-
ing for each bumped object in your scene. The fact that the bump texture has knowledge
of the surface of the objects also prohibits you from animating or deforming the surface,
restricting your use of bumpmapping even further.

A more practical approach is to create a new uniform coordinate system, which is the
same for every pixel on your object and can be built from your bump/normal texture. To
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Figure 10.10  Bumpmap
generated from a height
texture.

TEAM LinG - Live, Informative, Non-cost and Genuine !



accomplish this, you need to consider that if your object was not bumped, the normal for
each point on the surface would be perpendicular to the surface.

When applying a bumpmap or normal map to a surface, you are in essence modifying the
normal along the two vectors that go along the U and V texture coordinates. Putting all
this together yields a three-vector coordinate system that can be calculated on a per-pixel
basis. Figure 10.11 illustrates this coordinate system.

As you can see from Figure 10.11, the vectors along the U and V texture coordinates are
called Tangent and Binormal. Those vectors are defined as the 3D spatial direction in
which the U and V texture coordinates are headed for a particular point on the surface.
Not to worry! RenderMonkey has you covered yet again and can create those vectors for
you. If you ever need to calculate them yourself, they can be deduced by taking the varia-
tion of the U and V texture coordinates for a vertex by using an average for all the con-
tributing polygons and then generating a 3D vector pointing in the direction of the
texture coordinates.

When defining your stream mapping for a model, you can add both the Tangent and
Binormal vectors as inputs by selecting Add Stream from the Stream Mapping Editor and
picking the right one from the drop-down list.

When doing lighting with tangent space, all you need to do is build a tangent space matrix
from the surface normal, tangent vector, and bi-normal vector. This matrix can then be
used to transform any of the lighting components into this coordinate system by multi-
plying it by the tangent space matrix.
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Figure 10.11  How the tangent space coordinate system is
generated.
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After you complete this operation, all your lighting components are interpolated relative
to the local tangent space for each pixel. The following piece of code shows how you can
construct a tangent space matrix and use it to convert a vector from object space to tan-
gent space:

// Build the tangent space matrix
float3x3 TangentSpace;
TangentSpace[0] = inTangent;
TangentSpace[1] = inBinormal;
TangentSpace[2] = inNormal;

// Transform a vector from object space to tangent space
LightDir = mul(TangentSpace,LightDir);

When you’re working in tangent space, all lighting vectors become relative to the interpo-
lated surface normal for this pixel. This means that when you do operations such as
bumpmapping, you can store the values as simple relative values because you are working
with a coordinate system that represents the same thing no matter what point on the sur-
face you are dealing with.

Normal Maps
Now that you understand the usefulness of tangent space, it is time to go ahead and see
what can be done with it. The most common use of tangent space when dealing with per-
pixel lighting is the use of normal maps to add bump-like details to the surface of an
object.

Although the result is similar to the use of a bumpmap, the
means used to achieve the results are different. With
bumpmapping, the bump texture was used to encode an
offset from the interpolated normal using two color com-
ponents. In the case of a normal map, the texture uses a
three-color component which represents the actual nor-
mal in tangent space. This representation assumes the blue
component, or Z, represents the default normal position in
tangent space.

Such textures are difficult to author manually because it is
a matter of painting vectors using colors. However, tools
such as the NVIDIA Photoshop plug-in can generate such
normal map textures from a grayscale height texture.
Figure 10.12 shows such a normal map texture for the
stone texture used throughout this chapter.
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Figure 10.12  Normal map
texture created for the stone
texture used in this chapter.
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With this knowledge, it is now time to take our per-pixel diffuse/specular shader and use a
normal map to enhance the lighting on the object. The first step to accomplish this is to add
the normal map texture to both the workspace and the rendering pass. The generated nor-
mal map texture can be found on the CD-ROM as FieldstoneBumpDOT3.tga. Remember to
make sure that filtering is enabled on this new texture by setting the MINFILTER, MAGFILTER,
and MIPFILTER to LINEAR in the texture object settings. This filter setting ensures that the nor-
mal map texels are interpolating, reducing the block artifacts in your rendering.

With this set of changes, it is now time to attack the vertex shader. The changes here are
fairly simple. The first step is to introduce the tangent space matrix code developed in the
previous section. Then, you need to transform both the half vector and light vector into
tangent space before passing them to the pixel shader.

Keep in mind that, because you are working in tangent space, the orientation of the sur-
face normal is implicit and its deviations will be read from the normal map. Because of
this, it does not need to be passed to the pixel shader, and you can remove this from the
output structure.

With this set of adjustments, you should obtain the following vertex shader code:

float4 Light1_Attenuation;
float4 view_position;
float4x4 view_proj_matrix;
float4x4 inv_view_matrix;
float4x4 view_matrix;
float4 Light1_Color;
float4 Light_Ambient;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float4 LightDir: TEXCOORD1;
float3 HalfVect: TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float3 inTangent:TANGENT, float3 inBinormal:BINORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;
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// Determine the distance from the light to the vertex and the direction
float4 LightDir;
LightDir.xyz = mul(inv_view_matrix,float3(80,00,-80)) - inPos;
float  Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the per-vertex distance based attenuation
LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +

Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

// Determine the eye vector
float3 EyeVector = normalize(view_position-inPos);

// Transform to tangent space and output
// half vector and light direction
float3x3 TangentSpace;
TangentSpace[0] = inTangent;
TangentSpace[1] = inBinormal;
TangentSpace[2] = inNormal;
Out.HalfVect = mul(TangentSpace,normalize(LightDir.xyz+EyeVector));
Out.LightDir = float4(mul(TangentSpace,LightDir.xyz),LightDir.w);

return Out;
}

On the pixel shader’s end, the only change needed is in relation to the surface normal.
Because all the lighting components are passed to the pixel shader in tangent space, this
means that they are already relative to the interpolated vertex surface normal, which is
implicit through the definition of tangent space. The actual normal on any point of the
surface will then come from the normal map.

To do this, you need to sample the normal map texture and convert it from an unsigned
value to a signed one. This value will then be the pixel-specific normal and can be substi-
tuted to the vertex-interpolated normal from the previous shader implementations.

The final pixel shader code for this bumped lighting shader is as follows:

float4 Light1_Color;
sampler Texture0;
sampler Bump;
float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
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{
// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),16);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * LightDir.w * (SpecularAttn+DiffuseAttn);

}

float4 ps_main(float2 inTxr:TEXCOORD0,float4 LightDir:TEXCOORD1,
float3 HalfVect:TEXCOORD2) : COLOR

{
// Read bump and influence the normal
float3 normal = tex2D(Bump,inTxr) * 2 - 1;

// Simply route the vertex color to the output
return tex2D(Texture0,inTxr)*

(0.15+Light_Point(normal,HalfVect,LightDir,Light1_Color));
}

The rendering result for this normal mapped shader is shown in Figure 10.13. The shader
is included on the CD-ROM as shader_5.rfx.
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Figure 10.13  Results for the normal mapped
per-pixel specular and diffuse lighting shader.
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It’s Your Turn!
With what I have shown you in this chapter, you should have a real understanding of how
powerful per-pixel lighting can be. The following exercises will enable you to expand upon
this knowledge by exploring your own creativity. You can also find the solutions to these
exercises in Appendix D.

Exercise 1: DIRECTION LIGHTS
As with the previous chapter, you are invited to implement a direction lighting shader,
basing your work on the shaders developed throughout this chapter. To complete this
shader, start off with the bumpmapped shader developed earlier and change the light to
support a directional light.

Exercise 2: MULTIPLE LIGHTS
Starting with the bumpmapped per-pixel lighting shader developed earlier in this chap-
ter, you are invited to add a second point light to it. Doing this requires you to calculate
lighting information for multiple lights, and to pass multiple tangent space vectors for
each light to the pixel shader for evaluation.

What’s Next?
Per-pixel lighting, although more expensive, can go a long way toward improving the 
realism of your graphics. Initially, by decomposing components that do not interpolate
well, you were able to remove the lighting artifacts that can result, especially from low-
tessellation meshes.

Stemming from this, you could transform this per-pixel information from object space to
tangent space. Tangent space represents the coordinate system, which is local for each
pixel on the surface and is the perfect coordinate system to represent surface level details
in a way where the representation does not have to be object-dependent.

Through this tangent space coordinate system, you can take advantage of normal maps to
add surface details by representing the variations on the surface normals of the objects.

As you have seen, proper object lighting can make significant improvement in your scene.
I will cover a few more advanced lighting topics later on in this book. In the next chapter,
I’ll discuss the topic of reflections.
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Mirror, Mirror, 
On the Wall

chapter 11

In the last few chapters, you learned how lighting is an important component in mak-
ing realistic graphics. You may remember that not all materials behave the same way
or have specific properties. This chapter is the first in a series that addresses how dif-

ferent materials interact with their environment.

In this chapter, you will learn about the essentials you need to know when dealing with
materials that are translucent and reflective. I will be covering the topics of reflection and
refraction and how they interact. By the end of this chapter, you will be able to render
materials that exhibit both translucency and reflectivity.

Although there may be different approaches to doing both reflections and refractions, we
will concentrate on using cube environment maps. This method is a great way of repre-
senting the captured environment from a specific point within your scene and is easy to
use for reflections and refractions.

From Reflections to Refractions
Many materials, as you know, have properties that allow them to either reflect or refract
light. Probably the most obvious example is glass, which presents both phenomena at the
same time. On the other hand, other materials that have glossy surfaces, such as car paint,
also show reflections under the right lighting conditions.

Before we examine the details of how reflection and refraction can be reproduced, I must
address two topics. First, I need to explain why cubemap environments are so well suited
for such effects. Second, you must build the basic shader that you’ll use throughout this
chapter.

TEAM LinG - Live, Informative, Non-cost and Genuine !



So why cubemaps? Cubemaps were covered in Chapter 6, “Blurring Things Up,” but they
are worth revisiting.

A cubemap is a set of six textures grouped together forming a cube centered on a single
point in space, with each face being a snapshot of the scene along a specific axis as shown
in Figure 11.1. Although this may not seem like a natural way of representing an environ-
ment from a single point in space, it is a very efficient way for your hardware to do so.

Because of the way a cubemap is formed, looking up the environment map is easily done
when given a direction vector to look at. The major axis of the vector is used to find out
which face of the cube will be sampled; the remaining two components of the vector are
used to access the cubemap face as if it were a regular texture.

n o t e

Because of the nature of cubemaps and environment maps, there is an aspect you will need to keep
in mind. Because the environment map represents a snapshot of your environment from a particu-
lar point in space, this implies that everything within it is considered to be at an infinite distance
from that point; in simpler terms, because the environment is pre-cooked, it will not contain any
perspective.

Accessing a cubemap is simply a matter of determining which face to access and then
accessing it as a regular texture. This makes the cubemap a natural and easy feature to
implement with existing hardware architectures. Another added benefit is how easy a
cubemap is to build.
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Figure 11.1  Illustration of how a cubemap is formed.
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Building a cubemap from scratch is simply a matter of setting up six cameras with a 90
degree field of view facing all three major axes in both directions. At the end of this chap-
ter, I will show you how you can dynamically construct a cubemap for use in a reflection
and refraction shader. The process for building static environment maps, such as Snow.dds,
generally involves authoring each face separately and using a specialized tool such as the
Microsoft Texture Tool to composite them together.

Enough about cubemaps for now, though. Let’s set up the basic shader that we will use
throughout this chapter.

The basic shader you will use in this chapter is similar to the one developed for the heat
haze and depth of field effects. The scene is composed of two passes. The first pass ren-
ders the environment cubemap you will use for this chapter to a sphere to create a back-
ground environment for the scene. (I recommend using Snow.dds, which is included on
the CD-ROM source code directory for this chapter.)

The second rendering pass renders a standard teapot object to the scene. For now, you will
simply render the teapot using a wood texture, but you will add reflection and refraction
to this object later on. See Chapter 6 to learn how the workspace is set up. Right now, let’s
go back to the first pass and see how the shader code is formed.

When rendering an environment to a sphere in this way, you must take a few things into
account. First of all, the sphere model you have is a unit-sized sphere centered on the ori-
gin. However, because you will be using this sphere to map an environment onto the cam-
era, this sphere needs to be re-centered around the camera that is rendering it. This can
easily be done by offsetting the sphere vertex positions by the camera’s position, as defined
by the built-in variable, before transforming it.

In addition to centering the sphere at the center of the camera, the environment map rep-
resents visual information that is located at infinity, relative to where the camera is
located. This has the consequence that the environment will need to be rendered first, and
the ZWRITE render state must be set to D3D_FALSE to avoid writing any depth information to
the Z-buffer.

The other item that is needed by this shader is the view direction so the environment map
can be sampled properly. Because the 3D sphere we are using is an origin-centered unit
sphere, the view direction simply becomes the position of the sphere vertex. The vertex
shader code that renders the environment cubemap to a sphere is as follows:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{

float4 Pos: POSITION;
float3 dir: TEXCOORD0;
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};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Center environment around camera
Out.Pos = mul(view_proj_matrix, float4(Pos.xyz + view_position, 1));
Out.dir = Pos.xyz;

return Out;
}

Within the pixel shader for this pass, all you have to do is read in the view direction passed
in from the vertex shader and use it as a texture coordinate to look up the environment
map. Doing so yields the following pixel shader code:

sampler Environment;
float4 ps_main(float3 dir: TEXCOORD0) : COLOR
{

return texCUBE(Environment, dir);
}

The second pass needed for this basic
shader simply renders a model with a
texture applied to it. No point in
describing shader code here because
this is as simple as it gets.

With this shader compiled and run-
ning, you should get results similar to
the one shown in Figure 11.2. This
template shader has been included on
the CD-ROM as shader_1.rfx in the
directory for this chapter and is in fact
very similar to the template shader
developed in Chapter 7, “It’s Getting
Hot in Here.”

You are now all set up and ready to
start shading. So let’s start with the
first topic at hand: reflections.
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Figure 11.2  Rendering output for this chapter’s
template shader.
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Reflections
You may recall our discussion on specular lighting in Chapter 10, “Shiny Little Pixels.”
Light from a source bounces off a polished surface onto the viewer. Although this may
seem different from reflection, it is the same process. The specular lighting equation emu-
lates the same phenomenon but from the point of view of a single light. The reality is that
all visible objects in a scene can be seen as a source of light and treated in the same way,
especially when you are dealing with highly glossy surfaces.

The most obvious example of a reflective material is a mirror, which reflects every ray of
light it encounters almost perfectly. But some more subtle examples, such as water or
glass, also exhibit reflections under the right set of circumstances.

Reflections occur when a ray of light emanating from a source of light (or another lit
object) hits the surface of the reflective material and is bounced towards the viewer. As
Figure 11.3 shows, the basic concept behind reflection is simple. The angle between the
incident light angle and the surface normal is the same as the angle between the reflected
ray and the surface normal. Figure 11.3 also shows how the reflected vector can be calcu-
lated from the incident light vector and surface normal.

n o t e

Remember that HLSL has built-in functions for both reflection and refraction. Unless you have spe-
cific needs, you should use those built-in functions because it gives the compiler a better under-
standing of what you are trying to accomplish and results in more optimized code.
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Figure 11.3  How rays of light reflect off a surface towards the
viewer and the standard reflection equation.
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With this information, rendering the scene with reflection on your teapot should be fairly
straightforward. However, there is one aspect you must consider. In the preceding para-
graphs, I discussed how light comes from a source, such as a scene object, bounces off
your reflective surface, and heads toward the viewer. Actually, when rendering such a
scene, you need to do this process upside-down. Because you cannot practically consider
all sources of light in your scene, which would mean all pixels of your environment map,
you need to start from your camera and trace the reflection in its reverse path to see what
gets reflected.

To do this in a shader is simply a matter of determining the camera-to-object vector, and
performing the reflection from this vector to get the source of the reflection from which
to look up the environment map. The camera-to-object vector can be defined as the dif-
ference between the vertex position and the camera position (through the use of the built-
in view_position variable).

For this shader, you only need to do the reflection calculations on the vertex shader to
maximize shader efficiency. You will be asked to repeat the same process per-pixel in the
exercises at the end of the chapter. After you calculate the reflection vector, it simply needs
to be passed to the pixel shader, where it will be used to read from the environment map.
Doing so yields the following vertex shader code:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Reflect:  TEXCOORD1;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Compute the reflection vector

Chapter 11   ■ Mirror, Mirror, On the Wall204

TEAM LinG - Live, Informative, Non-cost and Genuine !



Out.Reflect = -reflect(view_position-inPos,inNormal);

return Out;
}

Notice the negative sign in front of the reflect function call. Because you are tracing the
reflection from its destination to its source, you need to invert the resulting vector from
the reflect function so that it points in the right direction within the environment cube-
map. The pixel shader code simply needs to take in the reflection direction vector and
sample the environment map by using the texCUBE function. Taking this environment
value, proper reflection can be done by adding it to the object’s texture to create glossiness
on it. Following is an example of how this can be done, assuming a material with 40 per-
cent reflectivity:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORD0,float3 inReflect: TEXCOORD1) : COLOR
{

// Output texture color with reflection map
return 0.6*tex2D(Wood,inTxr)+0.4*texCUBE(EnvMap,inReflect);

}

With this shader compiled and running,
your output should look similar to that
shown in Figure 11.4. The complete 
version of this shader is included on the
CD-ROM as shader_2.rfx.

From Reflections to Refractions 205

Figure 11.4  Screenshot of the reflection shader
in action.
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Refraction
On the other end of the spectrum is the refraction effect. Translucent materials, such as
glass, let rays of light through their surface. However, as I mentioned in Chapter 7, these
rays of light are affected by the differences in density between the two media they cross,
causing the rays of light to be deviated. This deviation is defined by Snell’s Law, described
through illustration and equation in Figure 11.5.

As you can see from the equation in Figure 11.5,
the relationship between entering and exiting
angles is dependent on the ratio of the index of
refraction between the two media involved. The
index of refraction is defined as the ratio between
the two surface densities, that is, IOR = n1/n2.
Table 11.1 summarizes the IOR (index of refrac-
tion) for many common materials.

Keep in mind that the IOR generally varies slightly
in relationship to the color of light. The values
given in Table 11.1 assume a midrange yellow-
colored light. In the second exercise at the end of
this chapter, I will ask you to expand on the refrac-
tion shader to consider the color of light in the
refraction equation.
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Figure 11.5  How refraction happens, and a description of the
Snell’s Law equation.

Table 11.1 Refraction
Indexes for Various Materials

Material Refraction 
Index

Air 1.00
Ice 1.31
Alcohol 1.32
Water 1.33
Plastic 1.46
Plexiglass 1.51
Glass 1.52
Emerald 1.58
Mercury 1.62
Ruby 1.76
Diamond 2.42
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With this, writing a refraction shader should be a simple matter of taking our previous
shader and substituting the reflect function call with the refract one. However, at the
time of this writing, the refract function does not always work as expected. Because of
this, we will take the long way to solving the problem.

The first step in determining the refraction is to take the view vector and apply a dot prod-
uct with the surface normal. As you may remember, the dot product of two vectors essen-
tially gives you the cosine of the angle between the two vectors. However, to solve Snell’s
equation, you need the sine and not the cosine of the angle. This can be resolved by using
the following identity: sine = sqrt( 1 – cosine*cosine ).

With this result, you can use your refraction indices to deduce the angle of the exiting ray.
However, this angle only gives us a direction, not a vector! Because the refracted ray will
be in the same plane as that formed by the surface normal and the incident ray of light,
you can determine a 3D basis from the two vectors and then use the sine/cosine of the
refracted ray angle to define the refracted ray vector.

The following code shows how this can be done:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Refract:  TEXCOORD1;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

float3 viewVec = normalize(view_position - inPos);

// Compute the reflection vector using Snell’s Law
// the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r  * sin(theta_r)

// sin(theta_i) : Determine the sine of the incident vector
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float cosine = dot(viewVec, inNormal);
float sine = sqrt(1 - cosine * cosine);

// sin(theta_r) : Determine cosine of the refracted vector
// Note that the saturate(x) function is equivalent to
// using clamp(0,1,x). Also, 1.14 is the IOR for this 
// shader.
float sine2 = saturate(1.14 * sine);
float cosine2 = sqrt(1 - sine2 * sine2);

// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction
float3 x = -inNormal;
float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
Out.Refract = x * cosine2 + y * sine2;

return Out;
}

On the pixel shader side, all you need to do is sample the environment map and output
the color as the following code does:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORD0,float3 inRefract: TEXCOORD1) : COLOR
{

// Output texture color with reflection map
return texCUBE(EnvMap,inRefract);

}

With this shader compiled and running, your
output should look similar to the one shown
in Figure 11.6. The complete version of this
shader is included on the CD-ROM as
shader_3.rfx in the directory for this chapter.
You may have noticed the gray border on the
sides of the object. This is a natural phenome-
non that I will address in the next section.
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Figure 11.6  Rendering output for the final
refraction shader.
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Walking Hand in Hand
As you have seen from the rendering for the refraction shader, there are regions where no
refraction occurs, and the result is a grayish color. The reason behind this result is not a
coding error or similar glitch, but a natural phenomenon that occurs when dealing with
refraction.

If you look at a container of water, such as an aquarium, dead-on, you will see through
the water without any difficulty. However, if you look at the same container from a shal-
low angle, it will not be transparent anymore and will start behaving more like a mirror.

This phenomenon happens because refraction will stop happening past a certain angle,
called the critical angle. At this angle, the refraction angle is equal to 90 degrees, and any
incident rays past this angle exhibit a phenomenon called total internal reflection (or TIR),
which in essence means that the surface will then behave as a mirror instead of being
transparent. Figure 11.7 shows the transition of a refractive material towards TIR.

As you can see, because of total internal reflection, reflection and refraction actually go
hand in hand, and this is exactly the next shader you will be writing. But before you can
do so, you need to find out how the reflection and refraction combine.

We know that refraction will stop happening when the critical angle is, hit or in other
words, when the refraction angle is equal to 90 degrees. Because you already have the sine
and cosine of the exiting angle, you can use this value to determine the correct ratio of
reflected and refracted environment. Because the sine of this angle is already in the zero
to one range, it makes a great candidate to be used as a blending factor.
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Figure 11.7  Illustration of how the total internal reflection phenomenon
happens and the relationship between reflected and refracted light.
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After you determine the blending factors for both reflection and refraction, which will
also be passed to the pixel shader through one of the TEXCOORD variables, combining the two
effects is simply a matter of putting the two code bases together and passing the blend fac-
tors, the reflection vectors, and the refraction vectors on to the pixel shader. Once the
changes are done, you should end up with the following vertex shader code:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 Refract:  TEXCOORD1;
float3 Reflect:  TEXCOORD2;
float2 Factors:  TEXCOORD3;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

float3 viewVec = normalize(view_position - inPos);

// Compute reflection
Out.Reflect = reflect(-viewVec,inNormal);

// Compute the reflection vector using Snell’s Law
// the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r  * sin(theta_r)

// sin(theta_i)
float cosine = dot(viewVec, inNormal);
float sine = sqrt(1 - cosine * cosine);

// sin(theta_r)
float sine2 = saturate(1.14 * sine);
float cosine2 = sqrt(1 - sine2 * sine2);
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// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction
float3 x = -inNormal;
float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
Out.Refract = x * cosine2 + y * sine2;

// Determine proper reflection and refraction factors through
// a Fresnel approximation. (x = reflect, y = refract)
Out.Factors.x = sine2;
Out.Factors.y = (1 - sine2);

return Out;
}

The pixel shader for this combined reflection/refraction shader needs to take in three val-
ues. The first two are the lookup vectors for the environment cubemap lookup for the
reflection and refraction, and the last value is the blending factors to use. Once you have
looked up both environment values, combining them is a straightforward process.

Keep in mind that if you are applying a texture to your object, the refraction environment
map value for refraction needs to be modulated with the object texture value because the
texture has the effect of tinting the rays of light as they traverse the object. The following
is an example pixel shader code detailing how the refraction and reflection can be com-
bined:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORD0,float3 inRefract: TEXCOORD1,

float3 inReflect: TEXCOORD2,float2 inFct: TEXCOORD3) : COLOR
{

// Output texture color with reflection map
// Note the addition of 0.4 to the reflection/refraction 
// results to ensure a certain amount of ambient lighting
return inFct.x * texCUBE(EnvMap,inReflect) +

(inFct.y * texCUBE(EnvMap,inRefract) + 0.4)
* tex2D(Wood,inTxr);

}

With this shader compiled and running, your output should look similar to the one
shown in Figure 11.8. The complete version of this shader is included on the CD-ROM as
shader_4.rfx in the directory for this chapter.
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Building Dynamic Environment Maps
All these reflection and refraction shenanigans are nice for static scenes with one object,
but when your scene gets more dynamic or contains many objects, our current scheme
falls short. Because the environment map contains only a static, prebuilt scene, any reflec-
tions or refractions done with it will not contain any other objects in your scene. Doesn’t
make much sense to do refraction on a teapot if you will not see the elephant right behind
it, right?

The common solution to this problem is to use a dynamic cubemap instead of a static
one. In this section I will briefly review how this can be achieved. Unfortunately, at the
time of this writing, RenderMonkey does not support using cubemaps as render targets,
so you will not be able to implement a shader with this technique.

Because a cubemap is essentially a collection of six textures, building a cubemap dynam-
ically requires filling those textures one-by-one. When rendering with DirectX, each face
of a cubemap can be accessed as an individual texture, which, in turn, can also be used as
a render target. So the overall process is to render your scene six times, once for each face
of the cube, setting up the camera so that it matches the point of view from that particu-
lar cubemap face.
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Figure 11.8  Rendering for the combined
reflection and refraction shader.
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n o t e

At the time of this writing, cubemap textures are a special texture format that can only be read
from .DDS files. This means that you cannot directly render to these textures, or you will need to
use specialized tools such as the DirectX Texture Tool to author such textures. Also note that these
textures can only be accessed through the use of the texCUBE HLSL functions because you need to
tell the hardware you want to use a cubemap.

Because of the nature of a cubemap, rendering a face is a simple process. The camera
needs to be positioned at the point in space where you want to build your environment
map and must face the direction that matches the particular face you are rendering. You
may want to refer to Figure 11.1 to see how cubemap faces correspond to a specific axis
direction in world space.

The only other setting required for your camera to render cubemap faces is the field of
view angle. The field of view defines the angle of the viewing frustum cone that the cam-
era defines in space. Because all cubemap faces are of equal size, you need to set the FOV
for your camera to 90 degrees. Doing so ensures that the edges for each cubemap face
properly correspond and that the resulting environment appears seamless.

One last consideration when creating dynamic environment maps is performance.
Because you must render each face individually, your scene needs to be rendered six times
every time you update the cubemap. This may become a performance issue for some
applications, and you may need to avoid updating the environment map every frame and
try to spread the cost over time as much as possible.

It’s Your Turn!
There you have it, your very own reflection and refraction shaders. The following exercises
will ask you to expand on those shaders to try out your own shading skills. And as always,
the solutions to these exercises are in Appendix D.

Exercise 1: DOING IT ALL PER-PIXEL
Starting with the combined reflection/refraction shader developed a few pages ago, mod-
ify it to do all of its operations on a per-pixel basis. This task should be simple and famil-
iar by now, especially considering that per-pixel lighting was the topic of Chapter 10, so
no hints will be given on how to perform this.
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Exercise 2: COLOR-BASED REFRACTION
As mentioned earlier, the index of refraction, or IOR, for a particular material varies in
function based on the color of the light that passes through the object. So far, you have
assumed a constant IOR and have ignored this fact.

For this exercise, you are asked to implement a refraction shader which considers the color
dispersion due to the variation of the IOR based on the color of light. To do this, start off
with the per-pixel shader developed in the previous exercise and adapt it so that a differ-
ent refraction vector will be calculated for each color component (red, green, and blue)
and sample the environment once for each color component. Do not focus on trying to
correctly determine an IOR for each color; simply use three nearby values.

What’s Next?
As you learned in this chapter, the interaction of light with translucent materials has many
aspects for you to consider, the main two being reflection and refraction. Although the
concepts behind those two effects are simple, they require you to render components of
your scene that are not necessarily easy to access.

This is where environment maps save the day! By estimating a full environment from a
specific point in your scene, you can take advantage of those powerful effects and signifi-
cantly enrich your renderings. However, when dealing with more dynamic environments,
you will have to take advantage of the nature of cubemaps and dynamically build an envi-
ronment map by rendering your scene to each face of the cubemap.

Now that you are on the topic of the interaction of light with surface materials, the next
chapter will discuss the topic of Bi-Directional Refractance Functions, or BDRFs. These
functions help define the properties for materials such as velvet, where the relationship
between the lighting and viewing angle cannot be described in terms of simple diffuse and
specular lighting.
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Not All Materials 
Are the Same

chapter 12

As you know by now, Part 3 mainly focuses on different materials and their behav-
iors when they are lit. So far, I have discussed simple lighting models, such as dif-
fuse and specular, as well as reflection and refraction.

Although these models work well for many objects and materials, when it comes to light-
ing, no material actually follows the models I have described. They are merely simplifica-
tions and approximations that were created to enable us to light objects in a realistic
manner while keeping in mind the performance limitations that 3D rendering hardware
imposes.

This works fine for many cases, but every once in a while, you want to render a material
that seems to defy the laws of physics when it comes to lighting. Don’t worry, the mater-
ial isn’t really breaking any laws of nature; it’s simply behaving in a manner that isn’t con-
sistent with our simplified models. Probably one of the most significant examples of this
is velvet.

As you may have noticed from looking at velvet, although it seems to have a diffuse light-
ing property, the intensity of lighting is not only dependent on the incident light angle,
but also on the viewer’s angle. Although this may sound like a specular behavior, the mate-
rial does not display sharp highlights as a specular material does. Figure 12.1 illustrates the
lighting distribution based on a specific incoming light angle. The lobe represents the pro-
portional amount of light that is reflected relative to the viewing direction for a specific
incoming light direction.
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As you can see in Figure 12.1, the lighting distribution lobe for a velvet-like material fol-
lows neither the specular nor the diffuse model. The shape of the lobe resembles more a
flattened diffuse lobe, where more of the light is re-emitted at sharp angles.

As discussed in Chapter 9, “May There Be Light,” this is because the minuscule hairs on
the surface of the velvet material tend to reflect the rays in a semi-random way at angles
sharper than the normal reflection angle. Figure 12.2 illustrates how the light actually
interacts with a velvet surface.

This being said, how can we light such materials? The answer comes from taking into
account the angles of both the light and the viewer. One such way of representing this type
of lighting is by using a Bi-Directional Refractance Distribution Function, commonly
referred to as BRDF.
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Figure 12.1  The lighting distribution lobe for a velvet-like
material.

Figure 12.2  The interaction of light with the surface of velvet.
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BRDFs Are Your Friends
BRDFs are one of many ways to represent lighting in a more correct way. One thing you
have to remember when dealing with an algorithm such as a BRDF is that it does not pro-
vide a “fits-all” equation to solve all your problems, but is more of a framework on which
you can build.

There are a few assumptions with BRDFs that you must know before you get started. The
most important one comes from the Bi-Directional part of its name. In essence, this
means that if you have a set of lighting and viewing vectors, switching them around has
no impact on the lighting result. This restricts the factors you must consider when light-
ing an object with a BRDF. The only things you need to consider when rendering lighting
with Bi-Directional Refractance Distribution Functions are the angles, which are defined
by the light vector, eye vector, and angles on the plane of the surface. This is illustrated in
Figure 12.3.

In Figure 12.3, notice the light (incident) and view vector (reflected) angles. These are the
same vectors you dealt with in regular diffuse and specular lighting. However, the basic
BRDF equation also refers to the angles of the view vector along the plane of the mater-
ial’s surface, which is defined by the surface’s tangent space. Some materials have lighting
that is not only dependent on the angles in the light/view plane, but also on the angle
along the plane of the surface. These materials, such as brushed metal, are called
anisotropic. On the other hand, many materials, such as velvet, have a uniform distribu-
tion and do not depend on this angle, and will light the same no matter which direction
the material is viewed from; they are called isotropic. Because a great majority of materi-
als are isotropic, I will focus on them in this chapter. Just remember that what you learn
here can easily be applied to anisotropic materials also.
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Figure 12.3  Angles to consider when dealing with a BRDF.
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Now, looking at the equation in Figure 12.3, you see that a BRDF is defined by this set 
of angles and a function, but no equation is given. This is because the idea behind 
Bi-Directional Refractance Distribution Functions only gives you a function that estab-
lishes the relationship between lighting and a set of parameters, but the function itself can
be defined on a per-material basis.

Unfortunately, there is no “fits-all” equation, nor is there a standard way of discovering the
BRDF function for a specific material. All the results come from observation and mea-
surement. Because we have discussed the case of lighting a velvet-like material in Chapter
9, it seems like a natural place to start.

Soft and Velvety
As mentioned earlier, velvet is one of those materials that seem to defy the rules of physics
when it comes to lighting. Because of this, standard models like diffuse and specular light-
ing just won’t do. This is one of those cases where a BRDF can be used to represent more
accurately the lighting for such a material. Before you can consider defining a function to
represent the lighting of velvet, however, you need to determine why it is lit so differently.

For this, you need to consider what composes the surface of a velvet-like material. The
surface of velvet is composed of a multitude of tiny little hairs. Those hairs cause the inci-
dent light to be reflected at an angle greater than normally occurs with specular lighting.
However, because of the random distribution of the hairs on the surface, velvet lighting
also has a softer component than specular lighting. Figure 12.2 shows how light interacts
with the surface of a velvet-like material.

Looking at the interaction of light with the surface of the velvet material, in addition to
looking at the lighting distribution lobe shown in Figure 12.1, gives you a good idea of
how light interacts with the surface of the material. Because you are working on the
assumption that velvet is an isotropic material, all you need to consider is the incident and
view angle about the surface normal.

At this point, you understand the behavior that governs the lighting of velvet, but you still
need to define a BRDF function that will approximate velvet closely enough. One
approach would be to take lighting measurements at different angle combinations and
somehow find a function that matches the samplings as closely as possible. We’ll get into
that a bit later in this chapter.

Because the behavior of velvet is somewhat simpler than many other materials, easier
approaches can be taken. In 1941, a researcher named Minneart came up with a lighting
equation for the subtle lighting of anisotropic surfaces and darkening at the edges of
objects. As it turns out, his lighting model can be easily adapted to the lighting of velvet.
Figure 12.4 illustrates this simplified equation, which will be used to shade our velvet
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materials. The figure also shows the estimated
lighting distribution lobe for the Minneart
equation. The k factor in the equation is a con-
stant that will be defined for a specific material
to control its softness.

To implement velvet lighting in the form of a
shader, you can simply take the Minneart equa-
tion from Figure 12.4 and apply it to a shader.
To start, all you need is a simple workspace that
renders a simple object. Because you are doing the lighting on a per-pixel basis, the vertex
shader needs to send in the appropriate information to the pixel shader, which consists of
the incident and view angle relative to the surface normal. This is similar to the diffuse and
specular lighting shader developed previously. Because velvet is considered an isotropic
material, all you need to send to the pixel shader is the surface normal, light direction, and
eye vector. The vertex shader code to accomplish this is as follows:

struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float3 Normal:   TEXCOORD0;
float3 LightDir: TEXCOORD1;
float3 EyeVect:  TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL)
{

VS_OUTPUT Out;

// Compute the projected position for this vertex and the
// object space normal
Out.Pos = mul(view_proj_matrix, inPos);
Out.Normal = inNormal;

// Determine the light direction vector. This assumes that the vector
// is constant relative to the camera.
Out.LightDir.xyz = mul(inv_view_matrix,

normalize(Light1_Position - inPos));

// Determine the eye vector for the light
// The value of (0,0,100,1) is an arbitrary
// position for our light.
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Figure 12.4  Minneart lighting equation
and sample lighting distribution lobe.
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Out.EyeVect = -normalize(mul(inv_view_matrix,float4(0,0,100,1))
+inPos);

return Out;
}

On the pixel shader side, you will need to take in the three vectors and determine the light
angle and view angle through the use of dot product. You also need to raise the result to the
power defined by the Minneart equation, which is stored in the variable Velvet_Exponent.
Once you have determined these values, all that is needed to determine the lighting inten-
sity is to multiply both values together. This yields the following pixel shader code. Note
that the Minneart lighting function has been put in a function called Light_Velvet:

float4x4 view_proj_matrix;
float4 Light1_Position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
float4 Light_Velvet(float3 Normal, float3 EyeVect, float3 LightDir,

float4 LightColor)
{

// Compute both the light and eye angle about the surface
// normal for the surface
float l = pow( clamp(dot(Normal, LightDir),0,1), 

Velvet_Exponent );
float e = pow( clamp(dot(Normal, EyeVect),0,1),

-Velvet_Exponent );

// Compute final lighting. Which is defined as the product
// of the cosine of both the light and eye vectors. We clamp
// the lighting with a minimum of 0.2 to ensure a minimal level
// of ambient lighting.
return LightColor * clamp(l*e,0.2,1);

}

float4 Light1_Color;
float Velvet_Exponent;
float4 ps_main(float3 inNormal:TEXCOORD0, float3 LightDir:TEXCOORD1,

float3 EyeVect:TEXCOORD2) : COLOR 
{

// Call the lighting function and return the result
return Light_Velvet(inNormal,-normalize(EyeVect),

normalize(LightDir),Light1_Color);
}
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In regards to the Velvet_Exponent variable, a good exponent value to use for simulating vel-
vet is 0.225. But you may wish to experiment with different values to see how the expo-
nent affects the lighting of your object.

Once compiled, the result should be similar to that shown in Figure 12.5. You can see in
the illustration how soft and velvety the shader makes the surface look. You can find the
complete and compiled version of this shader on the CD-ROM as shader_1.rfx.

You may have noticed that although the equation is fairly simple, you will pay the costs of
calculating the angles and powers for every pixel on your object. In addition, such equa-
tions cannot be evaluated on the per-2.0 pixel shader models. When dealing with isotropic
BRDF models, you only need to take two variables into account, both of which are in the
zero-to-one range, making it ideal for the use of a 2D lookup texture. In the first exercise
at the end of this chapter, you will be invited to implement the same Minneart-based vel-
vet shader by using a lookup texture instead of computing the full equation.

When doing an isotropic BRDF with a lookup texture, you will have two input variables,
which correspond to the light and viewer angles. Making those inputs correspond to the
U and V axes of the texture makes the process easy. You need to pre-compute the results
of the lighting equation into a texture and then simply use the input parameters to 
perform a regular texture lookup. Although this may seem convoluted, it can be much
more efficient than computing complex functions in real-time inside your pixel shader.
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Figure 12.5  Minneart velvet shader shown in action at
different lighting angles.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Determining BRDFs
The velvet shader you just developed was based on a lighting equation developed by Min-
neart. This equation and coefficients come mostly from observation and experimentation,
and although it wasn’t initially conceived for velvet lighting, it can be used to approximate
the look of a velvet-like material. But what can you do when dealing with other, more
complex materials? How can you determine an appropriate approximation?

The reality is that it can be hard to determine an exact model to estimate a material. The
simplest approach is to develop a general form of the BRDF function, which can be
adapted to match the characteristics of different materials. The best way to perform this
is to take several measurements of a material and then use a general curve matching func-
tion to adapt its coefficients to match the characteristics of the material as closely as pos-
sible.

Researchers at Columbia University and Utrecht University have collaborated in a joint
effort to explore the visual appearance of real-world surfaces. Their research has yielded a
database of BRDF measurements for over 60 common, real-world materials. In addition
to these BRDF samples, they have created best-matching functions of those materials for
use with the Oren-Nayer or Koenderink lighting models. The database can be found
online at http://www1.cs.columbia.edu/CAVE/curet/.

The simplest form of curve matching the Curet team has employed was to use the Oren-
Nayer lighting model. This model uses three coefficients to represent a variety of mostly
diffuse materials. Figure 12.6 shows the equation used by the Oren-Nayer model.

As you can see by the equation, the model itself is fairly hefty for only three coefficients. This
is why I will use this model instead of the even more complex 5 and 55 coefficient models.
Table 12.1 gives the Oren-Nayer coefficients for some of the most interesting models.

The interesting aspect of such an approach to BRDF is that after you sample the material
and determine the proper curve matching function parameters, most materials can be
represented with a single function. For more information on how you can accomplish
this, please refer to the Curet Web site.
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Figure 12.6  The Oren-Nayer lighting equation exposed.
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Table 12.1 Oren-Nayer Coefficients for Common Materials

Material Rho [rho] Sigma Kd

Artificial grass 0.026120 1.378872 0.993315
Brick 0.132886 0.893379 0.991720
Concrete 0.668533 0.600672 0.994044
Corduroy 0.439532 0.699112 0.972717
Cork 0.249295 0.659956 0.960105 
Cotton 0.484087 0.482679 0.947116
Felt 0.386790 0.414686 0.944892 
Foil 0.581514 0.252702 0.891302 
Frosted glass 0.142109 0.416384 0.907097 
Human skin 0.198588 0.579386 0.956055
Insulation 0.556606 0.136013 0.884576
Lambswool 0.325133 0.978133 0.966085
Leather 0.579367 0.179776 0.926559
Limestone 0.292841 0.413544 0.972684
Linen 0.251781 0.514593 0.958734
Loofah 0.527886 0.300436 0.973872
Moss 0.006588 0.542447 0.996590
Orange peel 0.526023 0.235808 0.876384
Plant 0.141438 0.758465 0.986035
Plaster 0.834116 0.362825 0.997624
Polyester 0.379962 0.576862 0.959845
Rabbit fur 0.457542 0.933632 0.973208
Roof shingle 0.195128 0.819147 0.997328 
Rough plastic 0.480943 0.278057 0.969021 
Rug 0.444769 0.566478 0.961640 
Sandpaper 0.422396 0.513084 0.980324 
Slate 0.030252 0.356822 0.974449
Sponge 0.301070 0.872413 0.967614
Stones 0.561534 1.107168 0.996424
Straw 0.282849 0.717587 0.978161
Styrofoam 0.477248 0.509725 0.956598
Terrycloth 0.619111 0.458514 0.973167
Velvet 0.171323 0.751002 0.990415 
Wood 0.132031 0.598438 0.965061
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Now that we have a more general approach to determining and rendering BRDFs, let’s
take the Oren-Nayer approach to reimplement the velvet shader previously developed.
The Minneart lighting equation served as a specific purpose lighting function which rep-
resented velvet well. On the other hand, the Oren-Nayer function was developed to rep-
resent a broader class of BRDF functions.

Oren-Nayer Velvet
To implement an Oren–Nayer-based shader, you need to understand its equation. The first
thing to notice is that the equation needs the surface normal, eye vector, light direction, and
both of the tangent space angles. However, you do not need to worry about the tangent
space angles because they can be determined with the use of the eye vector, surface normal,
and light direction vectors. In essence, assuming you compute the Oren-Nayer equation on
a per-pixel basis, all you need to pass the pixel shader is the surface normal, eye vector, and
light direction vector. Doing so will give you the following vertex shader code:

float4x4 view_proj_matrix;
float4 Light1_Position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
struct VS_OUTPUT 
{

float4 Pos:      POSITION;
float3 Normal:   TEXCOORD0;
float3 LightDir: TEXCOORD1;
float3 EyeVect:  TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL)
{

VS_OUTPUT Out;

// Compute the projected position for this vertex and the
// object space normal
Out.Pos = mul(view_proj_matrix, inPos);
Out.Normal = inNormal;

// Determine the light direction vector. This assumes that the vector
// is constant relative to the camera.
Out.LightDir.xyz = mul(inv_view_matrix,

normalize(Light1_Position - inPos));
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// Determine the eye vector for the light
Out.EyeVect = -normalize(mul(inv_view_matrix,float4(0,0,100,1))

+inPos);

return Out;
}

The pixel shader is where things get a little more complicated; the first things you need to
determine are the angles corresponding to the light and eye vectors. This can easily be
done with a dot product and will give you the following code:

float NdotL = dot(Normal, LightDir);
float NdotE = dot(Normal, EyeVect);

Beyond this, you will also need to determine the sine, cosine, and tangent of each vector.
The cosine is given to you explicitly through the use of the dot product. The sine itself can
be determined by computing the length of the cross product between the vectors. The fol-
lowing code shows how:

float sinTheta_r = length(cross(EyeVect,Normal));
float sinTheta_i = length(cross(LightDir,Normal));

The tangent is simply defined by sine/cosine and is easy to calculate from the sine and
cosine values you have already determined.

The next step is to determine the azimuth angle, which is the angle defined by the projec-
tion of our vectors into the plane of the surface. The azimuth angle is equivalent to the
phi angles illustrated in Figure 12.3 . This is a little more complicated but can be deter-
mined by projecting the eye and light vectors onto the surface plane, using the surface
normal, and computing the dot product of the two vectors. This gives the following code:

float3 E_p = normalize(EyeVect-NdotE*Normal);
float3 L_p = normalize(LightDir-NdotL*Normal);
float cosAzimuth = dot(E_p, L_p);

This is all you need to compute the Oren-Nayer lighting component. Take the calculated
values and plug them into the equation. The pixel shader code to do this is as follows:

float inten = rho_pi * cosTheta_i *  
(A + B * max(0, cosAzimuth) * 
max(sinTheta_r, sinTheta_i) * min(tanTheta_i, tanTheta_r)); 

The only thing missing to complete this shader is determining the proper values for A, B,
and ρ_π (rho_pi) within the Oren-Nayer shader. If you take the coefficients from Table
12.1 and input them into the factored equations in Figure 12.6, you will arrive at the con-
clusion that A = 0.68, B = 0.38, and ρ_π = 0.054.
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n o t e

You may notice the low value on ρ_π for the velvet shader. Taking a look at the equation in Figure
12.6, you may notice that ρ_π actually translates into the maximum lighting intensity for the
shader. Because of the low value, you may need to manually skew this number or introduce a global
intensity multiplier to enable you to adjust the scale of this value.

Putting all the little bits of shader code together gives you the following shader:

float4 Light1_Color;
float Velvet_Exponent;
float PI;
float rho_pi;
float A;
float B;
float4 Light_Velvet(float3 Normal, float3 EyeVect, float3 LightDir,

float4 LightColor)
{

// calculate all the dot products
float NdotL = dot(Normal, LightDir);
float NdotE = dot(Normal, EyeVect);

// calculate the zenith angles
float sinTheta_r = length(cross(EyeVect,Normal));
float cosTheta_r = max(NdotE,0.001);
float sinTheta_i = length(cross(LightDir,Normal));
float cosTheta_i = max(NdotL,0.001);
float tanTheta_i = sinTheta_i / cosTheta_i;
float tanTheta_r = sinTheta_r / cosTheta_r;

// calculate the azimuth angles
float3 E_p = normalize(EyeVect-NdotE*Normal);
float3 L_p = normalize(LightDir-NdotL*Normal);
float cosAzimuth = dot(E_p, L_p);

// Compute final lighting
float inten = rho_pi * cosTheta_i * 

(A + B * max(0, cosAzimuth) * 
max(sinTheta_r, sinTheta_i) * min(tanTheta_i, tanTheta_r)); 

return LightColor * clamp(inten,0,1);
}
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float4 ps_main(float3 inNormal:TEXCOORD0, float3 LightDir:TEXCOORD1,
float3 EyeVect:TEXCOORD2) : COLOR 

{
// Simply call the lighting function and return the result
return Light_Velvet(inNormal,-normalize(EyeVect),

normalize(LightDir),Light1_Color);
}

Once you have compiled this shader and input
the proper coefficients, the result should be sim-
ilar to what is shown in Figure 12.8. You can find
the complete and compiled version of this shader
on the CD-ROM as shader_2.rfx. In the second
exercise at the end of this chapter, you will be
asked to implement a few other BRDF shaders by
using the Oren-Nayer model.

As you can see from the results of the shader, the
Oren-Nayer approach yields a reasonable estima-
tion to rendering velvet through a BRDF. Unfor-
tunately, as you can see from the shader code and
its execution speed, even a three-coefficient
model is prohibitive, performance-wise. Because
of this, anything more than a simple Oren-Nayer
implementation cannot be considered for anything in real-time.

On the bright side, data from a BRDF observation database, such as the Curet database,
can be used in combination with lookup textures to reproduce a BRDF with minimal
computational costs. The trickier part when dealing with lookup textures is building them
in the first place. However, this is outside the scope of this chapter and will not be
explained further. For more information, refer to the Curet Web site.

It’s Your Turn!
BRDFs are a great way for you to represent lighting on somewhat unusual materials. The
following exercises will ask you to expand on those shaders and try out your own shading
skills. As always, the solutions to these exercises are in Appendix D.

Exercise 1: USING LOOKUP TEXTURES
In this chapter, you developed a velvet shader by using the Minneart equation. However,
computing this equation on a per-pixel basis can be prohibitive. One solution to work around
this is to precompute the result of the equation in a texture and then use this texture as a
lookup table for the results based on the light and view angles about the surface normal.
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Figure 12.7  Rendering results for the
Oren–Nayer-based velvet shader.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Implementing this shader is relatively simple, but you need to find a way to bake the results
of the Minneart equation into a texture; this is the major challenge for this exercise.

For this shader, start with the Minneart equation and not the Curet database data. Using
the Minneart equation and logic, you should be able to determine how to build the
lookup texture with ease.

Exercise 2: MULTIPLE BRDFs
For this exercise, you simply need to take the Oren-Nayer BRDF shader developed in this
chapter to implement various materials using data from the Curet database. This exercise
is simply a matter of taking the Bi-Directional Refractance Distribution Function para-
meters for the Oren-Nayer implementation and calculating the A, B, and ρ_π coefficients
for the shader. For this exercise, you are asked to implement the BRDF shader for felt, skin,
and corduroy.

What’s Next?
Bi-Directional Refractance Distribution Functions, or BRDFs, are a great approach for
determining and rendering the true lighting characteristics of materials. However, because
there is no general method for determining the lighting function for a specific material,
empirical approaches must be taken.

By using experimentation, sampling, and observation, estimating functions can be deter-
mined which reasonably approximate the lighting of a material, such as the Minneart
equation for a velvet-like material. However, some materials cannot be represented so eas-
ily with a specific equation. For such cases, the ideal approach is the one taken by the
Curet group and involves taking many lighting samples at different angles and using a
curve matching function such as the Oren-Nayer lighting model.

Even with such approaches, the cost of execution can make such models prohibitive and
almost impossible for real-time renderings. In such cases, it is generally a good idea to take
advantage of the rendering hardware architectures to represent the results of those com-
plex equations as textures. Such textures can then be used as lookup textures within your
shader, making the whole lighting process more efficient and generic.

As you have seen, the use of BRDFs can go a long way in making complex materials look
more realistic when rendered. In combination with more basic lighting models, you can cre-
ate much more realistic scenes through better representation of the lighting in your scene.

Now that you know more about lighting models, how about creating materials from
scratch? What if you could render a wood material without applying a wood texture to the
object? In the next chapter, I will show you how you can leverage the power of the shader
architectures to create new materials procedurally from scratch.
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Building Materials 
from Scratch

chapter 13

So far throughout this book, we have examined many different forms of materials.
All of the preceding chapters concentrated on the texture or the lighting attributes
of the materials. But all of them had one thing in common. The looks and textur-

ing of the material were defined ahead of time.

Nature itself has an inherent randomness, which most computer rendered graphics do not
capture. This is one reason computer graphics often look artificial. When you think of
materials such as wood or marble, the randomness within the material is what makes it
unique. Yes, you can have a texture that looks like wood, but then all of your wood looks
the same, and the randomness factor goes away.

Wouldn’t it be interesting to take advantage of this randomness to render such materials
procedurally instead of relying on a prebuilt texture? In this chapter, I will show you a few
techniques you can use to render materials in a procedural way where you do not need
prebaked textures.

There are several techniques that can be used to achieve this. One of the most common
techniques is using Perlin noise. This simple technique can be used to generate noise pro-
cedurally, and can be used to produce textures, such as clouds or wood. I will also take you
through other techniques that can be used to render other noisy materials such as marble.

Later, we will explore how procedural techniques can be used to generate more complex
materials, such as animating water. We’ll start with the core of procedural materials, Per-
lin noise.
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Turning Up the Noise!
Many materials and objects in nature have inherent random attributes. For example, trees
and plants have well known shapes and randomness, which can be well approximated by
fractals, mathematical functions combining both randomness and pattern repetition. On
the other hand, some materials, such as wood or marble, have attributes that can be re-
created through the clever use of simple noise functions such as Perlin noise.

n o t e

Fractals are defined as non-regular geometric shapes that have the same degree of non-regularity
on all scales. From a non-mathematical point of view, they are mathematical formulations that can
describe how a stone at the base of a foothill can resemble the mountain from which it came.

Generally, when rendering those types of noisy materials, you depend on artist-built
assets. However, this means that if you want some variety within your scene, you will be
dependent on getting multiple versions of similar assets. On the other hand, it would be
nice to be able to have a self-generating material for which you can adjust parameters and
automatically get a countless number of variations with a single shader.

This is where noise generation shaders can come in handy. By determining the random
attributes of materials such as marble, you can use a general purpose noise shader to cre-
ate textures for your material, which will be random based on the parameters you supply.
But before you can attack those parameters, let’s look at how noise can be generated.
There are several methods that can be used to produce useful noise. So let’s start by check-
ing out some of the fundamentals when dealing with noise.

In Figure 13.1, you can see a noise texture that has been gener-
ated with Adobe Photoshop. The noise in this texture was cre-
ated with a general random number generation function. This
essentially means the noise has a Gaussian distribution, which
in turn means that the noise has a perfectly random distribu-
tion and is unpredictable.

Although such a noise function can have some applications, it
is not well suited for use in the generation of procedural mate-
rials for several reasons. First of all, if you are to make materi-
als from scratch, you want to have a noise function that can be
re-created on demand. Imagine the case where an artist sets up
a procedural wood texture within your scene: now if the texture
were to look different every single time the material was regenerated, it would be frus-
trating because you would have no control over the appearance of the scene.
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Figure 13.1  Noise
texture created through
the use of a general
function.
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The second thing to consider when deciding what makes a noise function practical is its
smoothness. Because you will be using the generated noise in a rendering environment
where the precision is unknown, the noise itself has to be sufficiently smooth and inter-
polatable. Imagine looking at a piece of marble from 100 meters away and then zooming
in on a little part of the same piece. You want your noise function to not be discrete but
continuous so you can have infinite detail when needed.

In regards to the first property of noise, this means that you need to define it, not in terms
of a general random function, but a pseudo-random function, R(x), which yields values
that seem random but are the same for each x value.

Regarding the second property, we can get off a little easier here because of some proper-
ties of the rendering hardware. Imagine the same kind of noise texture shown in Figure
13.1 but in a one-dimensional space. You will have a discrete function, as shown in Figure
13.2, which defines specific values at integer intervals. As I said earlier, the function must
be smooth or interpolatable so that any detail level can be rendered. In fact, the rendering
hardware performs bilinear interpolation for free; that is, if you use lookup textures for
your noise, the smoothing of the noise function is done automatically for you, as shown
in Figure 13.2b. However, to limit blockiness artifacts resulting from the rendering hard-
ware’s interpolation, it is good practice to slightly blur the noise ahead of time to allow for
better interpolation.

Remember when I said that the noise function in Figure 13.1 was useless. Well, it isn’t
completely useless. When using a technique such as Perlin noise, such a texture can be
used as a base function to define a more complex final noise.
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Figure 13.2  (a) Piecewise one-dimension noise function. (b) Interpolated version
of the same noise function.
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n o t e

Perlin noise was created by Ken Perlin in the early 1980s as a way to create a noise texture primi-
tive. This noise texture, or a combination of them, could be combined at different level of frequency
to create various procedural materials. Because these noise textures could be generated on the fly,
such texturing could be done without storing any offline textures. However, at this time, due to the
performance requirements for generating Perlin noise functions, they are still created offline and
joined together in real-time.

The approach behind Perlin noise is simple. By combining a set of simple noise functions
of different frequencies, you can achieve a more complex noise function. Each noise func-
tion of varying frequency is called an octave and can be either a different noise function
or the same noise function at a different scale. A one-dimensional example of this opera-
tion has been provided in Figure 13.3.
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Figure 13.3  One-dimensional example of how several octaves of noise are combined
to form some Perlin noise.
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One other way to think of the way Perlin noise works is to draw an analogy from the world of
music. Each basic Perlin noise function can be seen as a musical note. All alone, it serves little pur-
pose, but when combined with other notes to form chords, the whole can become a melody. The
same applies to Perlin noise functions where a single function serves little purpose, but the combi-
nation of several functions at different frequencies creates a more structured and interesting result.

One note in regards to the way Perlin noise works. Because you will be combining several
noise functions of different frequencies, if all textures are of the same resolution, higher
frequency noise functions will be repeated. This has the consequence that the noise func-
tion, or texture, will need to be tillable, which means that the texture can be repeated with-
out anyone noticing a seam between the repetitions.

You may have noticed from Figure 13.3 that each octave
was twice the frequency of the previous octave. This
defines the persistence of the noise and does not need to
be set to a value of two. Using different values can, in fact,
yield interesting noise results.

Having focused only on one-dimensional noise, let’s start
looking at more useful noise functions in either two or
three dimensions. By using a two-dimensional noise
function, you can create several different textures, such as
clouds or even marble. Figure 13.4 shows how 2D noise
can be combined to generate a cloud-like texture. Don’t
worry about the details for now, I will address how clouds
can be rendered in the next section.

Three-dimensional noise function can be even handier. By taking advantage of your hard-
ware’s volume texture support, you can build 3D noise textures that can be used to ren-
der solid textures, such as wood. On the plus side, you can even use the third dimension
as the time axis to create animated 2D textures, such as animated clouds.

I hope by now you have a better understanding of the basics of Perlin noise and its use-
fulness. I don’t want to spend too much time on all the boring details but simply want to
show you the basics. Now it is time to show you how to make Perlin noise come true.

To demonstrate Perlin noise, the vertex shader used is a simple screen space rendering
one. Using the ScreenAlignedQuad.3ds object, you can render a full-screen polygon that con-
tains a screen full of noise. You can rip this shader from any previous screen space shader.
To refresh your memory, here is the vertex shader code:

float4x4 view_proj_matrix;
float viewport_inv_width;
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Figure 13.4  Two-dimensional
Perlin noise used to generate a
cloud-like texture.
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float viewport_inv_height;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 texCoord: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, 0, 1);

// Texture coordinates are setup so that the full texture
// is mapped completely onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x - viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y - viewport_inv_height);

return Out;
}

The pixel shader is where most of the action happens. The first point of concern is which
noise texture to use. You could build one yourself using an image editing tool such as
Adobe Photoshop, but for the purpose of this shader, you will be using the NoiseVolume.dds
texture supplied with Render Monkey. Keep in mind that this texture is a 3D volume noise
texture and needs to be set up properly by using a volume texture variable to contain it.
Also, because you only need a 2D noise texture for this example, simply specify a Z tex-
ture coordinate of zero and use the tex3D function to sample it.

To simplify the Perlin noise rendering process even more, you will use the same noise tex-
ture for all octaves of the process. If you look back at Figure 13.3, you will see that each
octave has a different value for frequency and amplitude. When dealing with texture coor-
dinates, the frequency simply translates into a multiplier. With this in mind, the code to
sample the noise for a single octave is as follows:

Noise = (1.0/pow(persist,i))*tex3D(Texture0, txr*pow(2,i));

The persist value defines the persistence of the noise and is generally defined as 2.0. The
i variable defines the current octave and is a zero-based value. In simpler terms, for a per-
sistence of two, the amplitudes for each octave would be 1,0.5,0.25, . . . and the texture
coordinate multiplier would be 1,2,4, . . .
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Another thing to keep in mind is that the noise within the volume texture is meant to be
signed but is stored in an unsigned form. You need to change the preceding code to scale
and offset the noise values to be signed. This yields the following code:

Noise = (1.0/pow(persist,i))*tex3D(Texture0, txr*pow(2,i)*2-1);

To combine multiple octaves of noise, you simply need to sample the noise texture mul-
tiple times and add the result together. Because you want to be flexible and allow for any
number of octaves, this can be coded using a for loop. This yields the following final pixel
shader code:

float time_0_1;
float persistance;
sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample only the first slice of the noise texture
float3 txr = float3(texCoord,0);

// Combine 4 octaves of noise together
// Note: that the noise is considered signed but read from
// an unsigned texture so it must be renormalized
float final_noise = 0;
for(int i=0;i<4;i++)

final_noise +=(1.0/pow(persistance,i))*
(tex3D(Texture0, txr*pow(2,i))*2-1);

// Remove the sign from the noise
return (final_noise+1)/2;

}

After it’s compiled, this shader should give you a noise
function similar to the one shown in Figure 13.5. The
final version of the shader is included on the compan-
ion CD-ROM as shader_1.rfx.

Keep in mind that the previous shader only generates
basic Perlin noise. Over the next few sections, I will
show you how you can use such noise in more creative
ways, such as rendering wood and marble materials.
But let’s start with a more simple shader, using Perlin
noise to render clouds.
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Figure 13.5  Rendering result for
a basic Perlin noise shader.
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Clouds, Clouds in the Sky
Now that you know more about noise and how Perlin noise can be created, I can demon-
strate its use through a simple example. One rendering item that is well suited for the use
of noise is the generation of cloud-like textures.

For this example, we will assume that we are looking at the clouds as if we were seeing
them from the ground. Cloud rendering gets more complicated as you get closer to the
clouds. But with this assumption, clouds are seen as a clump of white puffy balls moving
across the sky.

Although it may seems awkward, similar effects can also be achieved through the proper
use of Perlin noise. Before you write a shader, let’s take a look at how you can take the out-
put from a Perlin noise generator to render a set of clouds.

If you look at the noise generated with the shader in Figure 13.5, you can see that this basic
Perlin noise itself has cloud-like qualities, but the cover is too dense to be realistic. In the
initial shader, the noise was in a zero to one range, allowing us to see all of it. To make the
cloud cover more patchy, you want to expand the range of the noise values so that only a
portion of the noise can be seen. The following code shows an example of how this can
be done:

Cloud = (final_noise+0.15)*2;

This code takes a value from -1 to 1 and rescales it so that only a portion of the noise value
is displayed, creating sporadic clouds. In addition, the increase in range of the cloud noise
causes saturated areas of cover, which is more consistent with the natural look of clouds.

The other aspect to consider when creating the pixel shader for cloud rendering is the per-
sistence and number of octaves needed for the noise. The persistence value for cloud noise
should be set to 2.0 because that produces a smoother noise. On the other end, the best
approach to determine the needed octaves is to experiment. From my experimentation,
two octaves proves to be sufficient.

With all this, the final pixel shader for the cloud rendering should be as follows:

float persistance;
sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample only the first slice of the noise texture
float3 txr = float3(texCoord,0);

// Combine 2 octaves of noise together.
// Two octaves is sufficient for cloud rendering
float final_noise = 0;
for(int i=0;i<2;i++)
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final_noise +=(1.0/pow(persistance,i))*
(tex3D(Texture0, txr*pow(2,i))*2-1);

// Remove the sign from the noise and prep
// it for cloud rendering

return ((final_noise+0.15)*2);
}

After it’s compiled, this shader should give you a ren-
dering that looks like clouds, as shown in Figure 13.6.
The final version of the shader has also been included
on the companion CD-ROM as shader_2.rfx.

Wood and Marble
Now that you have a better understanding of how
noise can be used to render simple material such as
clouds, you are ready to tackle more complex materi-
als. Both wood and marble have similar attributes
when they are rendered. Over the next few paragraphs,
I will show you how to take advantage of those attrib-
utes to render them in a procedural fashion.

Marble is generally a solid color material with turbulent veins of different colors. When
rendering the veins, the proper use of Perlin noise comes in handy. However, from our
previous cloud shader, the turbulence needed to render the veins is less dense. For this,
you need to adapt the vertex shader slightly to reduce the frequency of the noise. This can
easily be done by scaling down the texture coordinates by a factor of 50. Because you also
want your marble to be generated as a 3D material from which your object is carved, your
texture coordinates need to be a three-vector component derived from the object vertex
coordinates. The following piece of vertex shader code shows how this can be done:

Out.TexCoord = inPos/50;

Now that you have defined the texture coordinates needed to fetch the noise, you need to
determine how you can use the noise within the pixel shader to represent marble. The first
thing you need is a color. Although you could use a texture, marble is a somewhat con-
stant color, so you can define a constant color variable called marble_color, which you can
use in the pixel shader.

Marble is a constant-colored material with colored veins running through it. The noise
can be used as a way to modulate the base color so that the veins are of a darker color.
However, with the standard behavior of Perlin noise, about 50 percent of the material
would be dark for the negative portions of the noise. Because you want narrow veins
within your material, you need to address this.
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Figure 13.6  Rendering result for
Perlin noise-based cloud rendering
shader.
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The simplest way to correct for this is to simply use the absolute value of the noise, which
can be accomplished in HLSL by using the abs function. Applying this approach and scal-
ing the noise slightly to get a decent result yields a decent looking marble material. The
following pixel shader code illustrates the result:

float persistance;
float4 marble_color;
sampler Texture0;
float4 ps_main(float3 txr: TEXCOORD0) : COLOR
{

// Combine 2 octaves of noise together.
// Two octaves is sufficient for cloud rendering
float final_noise = 0;
for(int i=0;i<2;i++)

final_noise += ((1.0/pow(persistance,i))*
((tex3D(Texture0, txr*pow(2,i))*2)-1));

// Remove the sign from the noise and prep
// it for cloud rendering. The 0.2 and 1.2 factors
// in the equation are manual adjustments to make
// the rendering look better.
return marble_color * 0.2+(1.2*abs(final_noise));

}

After it’s compiled, this shader should give you a mar-
ble shaded elephant similar to the one shown in Figure
13.7. The final version of the shader is included on the
companion CD-ROM as shader_3.rfx.

Wood is similar to marble in the sense that it has a basic
color with veins traversing the material. However, the
veins in wood are caused by growth rings in the tree and
are periodic. This means they must be constructed dif-
ferently than when dealing with marble. The first step is
to adjust the noise frequency in the shader. Wood needs
a slightly higher frequency than marble and can be
accomplishing by dividing the noise texture coordinates
by 10, thus yielding the following vertex shader code:

Out.TexCoord = inPos/10;

Because you want the veins, or the rings in the wood, to be periodic, you can use a func-
tion such as a sine or cosine wave to create such veins. The cosine function itself is too
smooth, but this can be solved by raising the cosine to a higher power, making the transi-
tions of the function sharper, as shown in Figure 13.8.
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Figure 13.7  Rendering result for
your procedural marble shader.
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There is still one important aspect missing from the rings in wood. Those rings are con-
centric, circling around the center of the tree trunk, meaning the function needs to give a
circular value along a specific plane. This can be done with the following code, which takes
the dot product of two axes along a plane, creating a circular value on that plane. The fol-
lowing code shows how:

Circle = dot(noisetxr.xy,noisetxr.xy);

It is now time to talk about where the noise comes into play. Because all we want to do is
make the rings less regular, the noise can be used to offset the ring. This can easily be done
by adding a scaled version of the noise value to the cosine factor calculated through the
dot product I described previously. Doing so yields the following final pixel shader code:

float persistance;
float4 wood_color;
sampler Texture0;
float4 ps_main(float3 txr: TEXCOORD0) : COLOR
{

// Determine two sets of coordinates, one for the noise
// and one for the wood rings which is scaled by a factor
// of eight to reduce its frequency relative to the noise.
float3 noisetxr = txr;
txr = txr/8;
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Figure 13.8  How raising the power of a sine/cosine function makes the
transitions sharper.
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// Combine 3 octaves of noise together.
float final_noise = 0;
for(int i=0;i<2;i++)

final_noise += ((1.0/pow(persistance,i))*
((tex3D(Texture0, txr*pow(2,i))*2)-1));

// The wood is defined by a set of concentric rings in the XY
// plane. Those rings are pertubated by the computed noise multiplied
// by four to increase its amplitude
final_noise = abs(final_noise);
float grain = cos(dot(noisetxr.xy,noisetxr.xy) + final_noise*4);
return wood_color - pow(grain,8)/2;

}

After it’s completed, this shader should give you a
wood texture similar to the one shown in Figure 13.9.
The final version of the shader is included on the com-
panion CD-ROM as shader_4.rfx.

As you can see from the two shaders you just devel-
oped, working with procedural materials isn’t an exact
science. It involves a good amount of trial and error to
determine the basic attributes of the materials and
how the noise affects them. Although it may seem like
a lot of work and effort to get a simple texture on an
elephant, such techniques have several added advan-
tages which are worth considering. First of all, proce-
durally generated materials, with the proper type of
noise, can be zoomed in closer with fewer texture
requirements to keep the same amount of detail. Probably the most important advantage
of noise-based texturing is that you can have a totally different material by only changing
a few constants within your shader; this allows you to add variety to your scene with lit-
tle or no added texture cost.

With this in mind, there are other uses for noise beyond making procedural materials or
textures. It can be used to procedurally animate objects, as I will overview in the next few
paragraphs.

Using Noise to Move Things Around
Although the main topic of this chapter is the use of noise to render procedural materi-
als, I want to touch on another topic of importance when dealing with noise: procedural
animations. So far, when using shaders, you have dealt with objects that were static in your
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Figure 13.9  Rendering result for
your procedural wood texture.
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scene. However, what prevents you from taking advantage of your vertex shader to also
manipulate the position of vertices?

In the spirit of using noise within shaders, why can’t you use a function such as Perlin
noise, not just to create a procedural material, but also to animate the surface of an object?
One of the most obvious uses for something like this is the animation of a water surface.

Unfortunately, with current generations of hardware and the 2.0 vertex shader model, you
cannot do texture lookups within your vertex shader. You can expect this functionality to
appear in future generations of hardware, but for now, you need to do something else to
generate your noise. One approach is to combine several sine waves of different frequen-
cies. Although this leads to smoother noise, it suffices to animate the surface of an object.

Take one sine wave from each axis of an object and combine them. Taking the dot prod-
uct of the components along the axis for each of the sine waves, you get a circular sine
wave along this plane. The following code illustrates how this can be done:

Wave = sin( dot(inPos.xy,inPos.xy) + time_0_2PI);

Combining several sine waves for each plane for each major axis yields a sufficiently noisy
function. The following vertex shader shows how you can combine multiple waves to cre-
ate a somewhat noisy function:

float4x4 view_proj_matrix;
float viewport_inv_width;
float viewport_inv_height;
float time_0_2PI;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

// Define a noisy function based on a sequence
// of sine waves and manipulate the surface based
// on the result. The 0.05 factor is used to control
// the amplitude of the sine wave so they are proportional
// to the size of the used object.
inPos = inPos +

0.05*sin( dot(inPos.xy,inPos.xy) + time_0_2PI) +
0.05*sin( dot(inPos.xz,inPos.xz) + time_0_2PI) +
0.05*sin( dot(inPos.yz,inPos.yz) + time_0_2PI );
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// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}

If you compile this shader, the surface of your object is
distorted in a way similar to the one shown in Figure
13.10. The final version of the shader is included on
the companion CD-ROM as shader_5.rfx.

Now, keep in mind that this example is simplistic and
somewhat pointless, but similar techniques can be
used to create interesting effects. For example, you
could take an expanding sphere with a fiery texture
and, by applying noise to the sphere, create an explo-
sion that animates and varies every time. This is a sure
way to create truly organic and dynamic animations
within your scene.

It’s Your Turn!
Procedural materials are a great way to detach yourself from prebuilt assets and give you
full control over the look and appearance of your objects. The following exercises will let
you explore procedural materials on your own. The solutions to these exercises can be
found in Appendix D.

Exercise 1: ANIMATING CLOUDS
For this first exercise, you are asked to take the Perlin noise cloud shader developed ear-
lier in this chapter and extend it to animate the clouds in function of time. For this task,
you need to take advantage of the three dimensions of the noise texture used for this
shader. You can use the built-in time_0_1 variable to access the third dimension of the noise
texture so that it animates with time.

Exercise 2: RENDERING STRATA
Because we are on the topic of procedural materials, it makes sense to have you create your
own material from scratch. For this exercise, you are asked to develop a material based on
a rock material called strata. In this material, rocks of different colors are layered together.
To render such a material, you need to use a one-dimensional texture containing the col-
ors for each layer. This texture can be found as StrataSpline.dds on the CD-ROM.
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Figure 13.10  Rendering result for
noise-animated geometry shader.
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Using this texture, you need to access it based on one of the special coordinates of your
object, as was done with wood or marble. Obviously, you do not want the layers to be fully
straight and uniform; this is where you will use a Perlin noise function to add turbulence
to the material.

What’s Next?
Perlin noise can be a powerful tool when rendering. By using the latest shader technolo-
gies, you can not only render objects based on predefined materials, but also detach your-
self from prebuilt assets and render your own materials from scratch.

Whether you are rendering wood, marble, or any other noisy materials in nature, proce-
dural materials can add a new richness to your scene. In addition to this enhanced real-
ism, you are given full control over the parameters of the material. This gives you full
control over its appearance and the ability to create an unprecedented level of variety,
which can make such procedural textures a powerful scene design tool.

In addition to rendering procedural materials such as wood, the same techniques can be
applied to other tasks, such as the procedural animation of semi-random materials like
the waves on the surface of water.

This brings up another topic of importance. Why is there a requirement that materials
always look realistic? Some types of applications may require that you adopt different ren-
dering styles. The next chapter focuses on such non-realistic rendering techniques and
how you can use them within your applications.
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Why Does It Always 
Need to Look Real?

chapter 14

Throughout this book, you have striven to create realistic renderings, taking advan-
tage of the rendering hardware architectures to make your graphics appear less
synthetic. This is what we want for most of our graphics, and when you think

about it, it makes sense. Computer graphics are meant to be immersive, and there is no
better way to do so than fooling the human eye and brain into thinking that what is on
your monitor is the real deal.

There are cases, however, where style is more important than realism. Imagine that you
are creating a game based on a television cartoon character. Making your graphics look
real does not increase the illusion; rather, it breaks it. For this particular case, you want the
user to be immersed in the cartoon itself, so it is more than natural to try to re-create a
cartoonish style for your renderings.

In this chapter, I will discuss the topic of non-photorealistic rendering. As the name
implies, this topic is wider than just rendering cartoonish graphics but refers to the gen-
eral art of adapting your graphics to various non-realistic styles. In the first part of this
chapter, I mostly focus on toon rendering techniques, which are the most used non-
photorealistic rendering, or NPR, techniques. In the second half of the chapter, I will dis-
cuss the topic of hatching, which allows you to take advantage of the rendering hardware
to render geometry in a such way that it looks as if it has been pencil-sketched.
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Just Like a Television Cartoon
Sometimes you just want to render a scene in a non-realistic way to adapt yourself to a 
particular style. Cartoon rendering is probably one of the most common forms of
non-photorealistic rendering that are used in computer graphics. Before you can learn
how to render in this way, you need to know what composes such graphics. Take a look at
Figure 14.1.

From the picture in Figure 14.1, you can see a couple of distinct attributes. The first thing
is the low number of colors used in both the texturing and lighting; this is something I
will address later. But the second point of interest is that most objects have an outline.

At first glance, it may not be obvious why such outlines are there, but if you think about
it, it makes sense. Because not many colors are used with toon style graphics, it may
become difficult to distinguish objects because adjacent objects may end up using the
same colors. Giving objects an outline ensures that the human eye can easily distinguish
all the objects.

With this in mind, I will start by introducing to you several common approaches taken to
render outlines in a 3D environment.

Outline Rendering
Rendering object outlines in a 3D environment may seem difficult or awkward, but it is a
simple process, and many different techniques exist, all of them with pros and cons. In this
section, I will discuss several techniques but will only lead you through the implementa-
tion of the first one. You will be asked to implement a second technique as your first exer-
cise at the end of the chapter.
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Figure 14.1  Image taken from a cartoon.
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Although there are many ways to perform the same task, outline rendering is simply a mat-
ter of determining where the object begins and ends. This may seem like a complicated
process, especially in a 3D environment, but that’s where a little cleverness comes in.

Because the rendered result of your scene will be on a flat 2D surface, as a drawing would
be, why not do the outline of the object in screen-space, taking away all the considerations
of 3D rendering?

In this approach, you will use a render target to render your object in a solid color, such as
white against a black background. Although this does not give you the outline, you can use
this texture and run an edge detection filter to deduce the outline of your object. But before
talking about the edge detection algorithms, let’s render the object to the render target.

For this shader, you need to create a first pass that takes an object and renders it to a ren-
der target. Refer to Chapter 5, “Looking Through a Filter,” if you need to brush up on this
process. Just remember that the render target size should be set to match the viewport size,
or you may experience aliasing in the final rendering.

With this in mind, all your shaders need to do is render the object in a simple, static color.
The vertex shader to accomplish this is straightforward and simply needs to transform the
incoming vertex position to screen space. The shader code for this is

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos: POSITION;
};

VS_OUTPUT vs_main( float4 Pos: POSITION )
{

VS_OUTPUT Out;

// Simply project and output the vertex position
Out.Pos = mul( view_proj_matrix, Pos );
return Out;

}

The simplicity of this shader is that the object only needs to be rendered in a single opaque
color, such as white. If your scene has multiple objects, you may need to assign each object
a different color so the edge detection algorithm can discern between them. For this par-
ticular shader, all that is needed is to render the object in white. The following pixel shader
code accomplishes this:

float4 ps_main( float4 Diff: COLOR0 ) : COLOR
{

return 1;
}
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This render pass renders your object in a single opaque
color, as shown in Figure 14.2. This unique color ver-
sion in your render target is then used in the next ren-
dering pass to render the outline of the object.

To render the outline of an object with this shader, you
essentially need to take the render target and detect the
edges between the solid color object and the back-
ground. In Chapter 5, we explored the topic of screen
space filters and talked about edge detection filters.
Believe it or not, this filter finally comes in handy!

For this particular task, you will use a Sobel filter,
which detects edges both horizontally and vertically.
Figure 14.3 illustrates the Sobel filter that is used for
the edge detection.

Implementing this filter is a straightforward mat-
ter, similar to the edge detection filter that was dis-
cussed in Chapter 5. To perform the filtering, you
need to set up a new render pass, which takes the
render target, passes the filter on it, and renders
the outline of the object.

On the vertex shader end, all you need is to do a
full screen render pass using the ScreenAlign-
Quad.3ds model. You have done this several times,
but for reference, the needed vertex shader code is:

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos      : POSITION;
float2 TexCoord : TEXCOORD0;

};

VS_OUTPUT vs_main( float4 inPos: POSITION, float2 inTexCoord: TEXCOORD0)
{

VS_OUTPUT Out;

// Draw screen-space quad
In.Pos.xy      = sign(In.Pos.xy);
Out.Pos        = float4(In.Pos.xy, 0.0, 1.0);

Chapter 14   ■ Why Does It Always Need to Look Real?248

Figure 14.2  Object rendered in a
single color to be used for edge
detection.

Figure 14.3  Sobel edge detection filter
used to render the object outline.
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Out.TexCoord.x = 0.5 * (1 + In.Pos.x);
Out.TexCoord.y = 0.5 * (1 - In.Pos.y);

return Out;
}

The pixel shader used for the edge detection is also simple. First of all, you need to sam-
ple all the samples required for the Sobel filter, as shown in Figure 14.3. Once you have
computed the X and Y component of the edge filter, this gives you a 2D vector represent-
ing the direction of the edge for this particular pixel.

For this shader, we have no interest in the edge direction, but we do have an interest in the
intensity of the edge detected. With this vector, you can determine its length and compare
it against a fixed threshold, determining the presence of an edge sufficiently strong to jus-
tify rendering an outline.

That’s all you need to do. The following pixel shader is the complete version of the Sobel
edge detection filter. Notice the edge detection results are purposely inverted to ensure
that outlines are rendered as white:

sampler RT;

// Size of a one texel offset, this is hardcoded to 256
// for simplicity and since RenderMonkey cannot allow you
// to know the size of a texture,
const float off = 1.0 / 256.0;

float4 ps_main( float2 TexCoord : TEXCOORD0 ) : COLOR
{

// Sample the neighbor pixels
float s00 = tex2D(RT, TexCoord + float2(-off, -off));
float s01 = tex2D(RT, TexCoord + float2( 0,   -off));
float s02 = tex2D(RT, TexCoord + float2( off, -off));

float s10 = tex2D(RT, TexCoord + float2(-off,  0));
float s12 = tex2D(RT, TexCoord + float2( off,  0));

float s20 = tex2D(RT, TexCoord + float2(-off,  off));
float s21 = tex2D(RT, TexCoord + float2( 0,    off));
float s22 = tex2D(RT, TexCoord + float2( off,  off));

// Sobel filter in X and Y directions
float sobelX = s00 + 2 * s10 + s20 - s02 - 2 * s12 - s22;

Just Like a Television Cartoon 249

TEAM LinG - Live, Informative, Non-cost and Genuine !



float sobelY = s00 + 2 * s01 + s02 - s20 - 2 * s21 - s22;

// Find edge using a threshold of 0.07 which is sufficient
// to detect most edges.
float edgeSqr = (sobelX * sobelX + sobelY * sobelY);
return 1.0-(edgeSqr > (0.07 * 0.07));

}

After it is compiled and running, this shader should
render an outline of your object similar to the one
shown in Figure 14.4. The final version of the shader is
included on the companion CD-ROM as shader_1.rfx.

The preceding is one method of rendering outlines for
your cartoonish shader. There are several other meth-
ods that can be used. The following section reviews
some of the other common approaches used to render
outlines.

Other Outlining Ideas
Rendering the outlines of objects isn’t a cut-and-dried
task where there is one single right way of approaching
the problem. Several approaches can be taken, and all
of them have advantages and drawbacks. The intent of this section is to explain several
methods so you may expand your own library of choices and choose which one is most
appropriate to your situation.

Because I just mentioned the advantages and shortcomings of outlining methods, it
makes sense to address this point for the outlining method discussed in the previous sec-
tion. On the plus side, this method is easy to implement, and by clever use of varying col-
ors for each object, you can outline your whole scene in one pass. On the downside, you
need to do a three-pass scheme where you render your object to a render target, render it
again to your screen buffer, and then use the render target to determine the outline of
your objects. This additional cost may become prohibitive in the case of complex scenes.

Another shortfall of this method, depending on your situation, is that the method only
renders the outer outline of the object. This makes sense because the whole object is ren-
dered in a single opaque color, and then an edge detection algorithm is run on the result.
Imagine your teapot being oriented so the spout faces the camera. In this case, you would
only get an outline for the teapot itself, not the spout.
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Figure 14.4  Rendering the
outline of an object using the edge
detection method.
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One way to work around this problem is to take a sim-
ilar approach, but instead of using a unique opaque
color, you may want to use the depth of the object
when building your render target. It may not seem
obvious at first, but take a look at Figure 14.5. As you
can see, any object boundary is generally accompanied
by an abrupt change in the object’s depth values.

Taking advantage of this property, you can render your
object’s relative depth into a render target and then run
a similar edge detection algorithm to determine the
object’s outline from the depth discontinuities. This is
exactly what you will be asked to implement in the first
exercise at the end of this chapter.

Sometimes, doing screen space-based approaches can
be cumbersome, and you may wish to use a technique
that operates straight in 3D space. One approach often taken is to take advantage of the
surface normal of an object to determine its outline. Knowing the surface normal of the
object and the view vector of the camera, you know you are reaching the boundary of the
object when its normal and view vectors are becoming perpendicular. Because of this, you
can use the dot product in a similar fashion to determine how much outline to render:

float edge = 1 - (dot(Normal,ViewVec)>0.07);

Keep in mind that this approach requires good precision normals and will not work well
on low-polygon-count geometry. Also, because of interpolation issues, as with lighting,
such an approach yields better results when done per pixel instead of on a per-vertex basis.

Another approach to this same problem is to render an
object twice in your scene. The first time, use a black
opaque color with the object slightly scaled up from its
original size. Then on the second pass, simply render
your object as you normally would. The scaled version
of the object has the effect of creating a halo, or out-
line, around the extremities of the object. Figure 14.6
shows how this process looks for a simple object. This
technique is probably the simplest to integrate and
gives you outlines on both the outside and inside
boundaries. However, because your scale is done in 3D
space, you cannot guarantee the thickness of the bor-
der and may suffer from occasional aliasing.
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Figure 14.5  Depth render target
showing the discontinuities at the
object’s borders.

Figure 14.6  Sample object
boundary resulting from the object
scaling technique.
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There are several ways in which outlines can be rendered, and I can assure you I did not
present all of them here. When it is time to choose one, you will have to look at several of
them and make a decision on which one to use based on performance and feature con-
siderations. It generally becomes a matter of choosing the one that matches the desired
style and fits well within your rendering architecture. But for now, let’s move on to what
is inside the outline: the actual object!

Toon Shading
Rendering the outlines of your object was the first phase of rendering it in a cartoonish
manner. The second step is rendering the object itself in a way that is consistent with the
style. Toon shading itself can be divided into two separate tasks: texturing and lighting the
object.

For the topic of texturing, cartoon shading requires you to use fewer colors. This can be
accomplished in two ways.

The first approach involves not using any textures at all and assigning constant colors to
vertices or polygons. This may seem simplistic but, depending on the circumstances, can
get the job done. The second approach involves using regular textures but changing them
so they use less colors.

Take, for example, the fieldstone.dds texture you have used several times so far. This tex-
ture has too many colors to use in a cartoonish environment. However, using an image
editing program, such as Adobe Photoshop, you can stylize and reduce the number of col-
ors on the texture. Figure 14.7 illustrates the fieldstone.dds texture after it has been
manipulated to fit more of a cartoonish style.
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Figure 14.7  A texture after it has been manipulated for use in a toon shader.
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To render your object with this new texture, which is included on the CD-ROM as 
fieldstone_art.dds, you need to add a new render pass after the outline pass to render the
object. At this point, all you want is to render the textured object, so a simple projection
vertex shader will do the trick:

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos: POSITION;
float2 Tex: TEXCOORD0;

};

VS_OUTPUT vs_main( float4 inPos: POSITION,float2 inTex: TEXCOORD )
{

VS_OUTPUT Out;

// Simply project and output the vertex position
Out.Pos = mul( view_proj_matrix, inPos );
Out.Tex = inTex;
return Out;

}

The pixel shader simply needs to sample the texture and return the color. The resulting
shader code is as follows:

sampler Texture0;
float4 ps_main( float2 Tex: TEXCOORD0 ) : COLOR
{

return tex2D(Texture0, Tex);
}

After it’s compiled, this will give you a cartoonish tex-
tured object, with outline, such as the one shown in
Figure 14.8. The final version of the shader is included
on the companion CD-ROM as shader_2.rfx.

Just a simple texture on your object may not be
enough to do the trick. Remember that lighting is an
important visual cue when rendering, and the same is
true when you render cartoonish scenes. The same
approach applies to lighting as with textures; because
of the nature of cartoonish rendering, you need to
reduce your lighting to a discrete set of shades. The
easiest way to control the number of shades is scaling
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Figure 14.8  Rendering result for
the basic textured toon shader.
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your light value up and then taking only the integer part of the value; the scaling factor
determines the number of discrete shades. The following code snippet does this task:

Diffuse = (int)(Diffuse * 4) / 4.0;

To render the object with cartoonish lighting, you need to modify the vertex shader code
to render some lighting and reduce the number of shades in the final result. For this exam-
ple, you can calculate the lighting on a per-vertex basis because the style allows for poor
interpolation. In addition, we will stick to diffuse lighting for the moment. Applying those
changes yields the following vertex shader code:

float4x4 view_proj_matrix;
float4 Light1_Position;
float4 Light1_Attenuation;
float4 Light1_Color;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_PointDiffuse(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation)

{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist +
LightAttenuation.z * Dist * Dist ));

// Compute suface/light angle based attenuation defined as dot(N,L)
// Note : This must be clamped as it may become negative.
float AngleAttn = clamp(0, 1, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * DistAttn * AngleAttn;

}
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VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,float2 inTxr: TEXCOORD0)
{

VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color
float4 Color = float4(0.4,0.4,0.4,1);

// Compute light contribution
Color += Light_PointDiffuse(inPos, inNormal, Light1_Position,

Light1_Color, Light1_Attenuation);

// Output Final Color
Out.Color = Color;

return Out;
}

On the pixel shader side, you already have the color of the final lighting. You need to
reduce it to a discrete set of shades, as discussed earlier, and then modulate the result with
the object’s texture. Doing so yields the following pixel shader code:

sampler Texture0;
float4 ps_main( float2 Tex: TEXCOORD0, float4 Diffuse:COLOR0) : COLOR
{

// Clamp diffuse to a fixed set of values and modulate with
// the texture color
Diffuse = (int)(Diffuse * 4) / 4.0;
return Diffuse*tex2D(Texture0, Tex);

}

This shader should give you a result similar to the one
shown in Figure 14.9. Notice how the banding occurs
within the lighting. The final version of the shader is
included on the companion CD-ROM as shader_3.rfx.
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Figure 14.9  Rendering result for
a textured and lit toon shader.
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Real-Time Hatching
So far I have focused only on rendering objects in a cartoonish manner; however, there is
more to non-photorealistic rendering. Although toon shading is the most common form,
it is worth exploring some different approaches. In this section, I will introduce to you an
approach that can simulate the shading accomplished when objects are hand-drawn. This
shader, called real-time hatching, takes lighting information to render an object in a way
that makes its lighting appear as if it were hand-shaded.

The approach behind this shader is simple; you render and light your object as you nor-
mally would. However, instead of using the object’s texture, you will use the lighting infor-
mation to blend in a combination of two out of six prebuilt hatch patterns. The six pattern
textures represent hatching as it would be rendered at different levels of lighting intensity.
Figure 14.10 shows you the six textures you will be using for this shader.

The tricky part with this shader is determining which two textures to use out of the set of
six. For this to happen, you need to take advantage of the vertex shader 2.0 architecture.
After discovering the diffuse lighting for your object, you can multiply this value by the
number of textures you are using, six for this shader. This will then enable you to use the
integer part of the lighting to determine which set of textures to use. In addition to this, the
fractional part of the texture gives you the interpolation factor between the two textures.
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Through the clever use of conditional statements, you can write vertex shader code that
determines which textures and at which factor to blend them in. However, because all this
is happening in the vertex shader, you have no control over which textures the pixel shader
will sample. To work around this, pass a factor for each of the six textures and let the pixel
shader blend them appropriately. Doing so yields the following vertex shader code:

float4 Light_Direction;
float4x4 view_matrix;
float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos         : POSITION0;
float2 TexCoord    : TEXCOORD0;
float3 HatchWeights0 : TEXCOORD1;
float3 HatchWeights1 : TEXCOORD2;

};

VS_OUTPUT vs_main( float4 inPos: POSITION0, float3 inNormal: NORMAL0,
float2 inTexCoord : TEXCOORD0 )

{
VS_OUTPUT Out;

// Compute projected position and transfer texture
// coordinates for the object
Out.Pos = mul( view_proj_matrix, inPos );
Out.TexCoord = inTexCoord;

// Determine a simple diffuse lighting component based
// on a directional light in view space
float3 pos_world    = mul( view_matrix, inPos );
float3 normal_world = normalize(mul( (float3x3)view_matrix,

inNormal ));
float  diffuse = min(1.0,max(0,dot(-Light_Direction,normal_world)));
diffuse = pow(diffuse,4) ;

float  hatchFactor = diffuse * 6.0;
float3 weight0 = 0.0;
float3 weight1 = 0.0;

// Determine the weights for the hatch textures based on the
// hatch factor which is simply proportional to the diffuse
// lighting. In other words, the more lit the object, the less
// dense the hatching will be.
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if (hatchFactor>5.0) { weight0.x = 1.0; }
else if (hatchFactor>4.0)
{

weight0.x = 1.0 - (5.0 - hatchFactor);
weight0.y = 1.0 - weight0.x;

}
else if (hatchFactor>3.0)
{

weight0.y = 1.0 - (4.0 - hatchFactor);
weight0.z = 1.0 - weight0.y;

}
else if (hatchFactor>2.0)
{

weight0.z = 1.0 - (3.0 - hatchFactor);
weight1.x = 1.0 - weight0.z;

}
else if (hatchFactor>1.0)
{

weight1.x = 1.0 - (2.0 - hatchFactor);
weight1.y = 1.0 - weight1.x;

}
else if (hatchFactor>0.0)
{

weight1.y = 1.0 - (1.0 - hatchFactor);
weight1.z = 1.0 - weight1.y;

}
Out.HatchWeights0 = weight0;
Out.HatchWeights1 = weight1;

return Out;
}

In the pixel shader, take the six factors passed in the two sets of texture coordinates to sam-
ple all six textures. Because only two of the textures have a nonzero weight, the appropri-
ate two textures will have a value when they are sampled and weighed. Once you sample
all six textures, the result is achieved by adding all the samples together. The following
pixel shader accomplishes this:

sampler Hatch0;
sampler Hatch1;
sampler Hatch2;
sampler Hatch3;
sampler Hatch4;
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sampler Hatch5;
sampler Base;
float4 ps_main( float2 TexCoord: TEXCOORD0,

float3 HatchWeights0: TEXCOORD1,
float3 HatchWeights1 : TEXCOORD2) : COLOR

{
// Sample eatch hatch texture based on the object’s texture
// coordinates and weight the pattern based on the factor
// determined from the lighting.
float4 hatchTex0 = tex2D(Hatch0,TexCoord) * HatchWeights0.x;
float4 hatchTex1 = tex2D(Hatch1,TexCoord) * HatchWeights0.y;
float4 hatchTex2 = tex2D(Hatch2,TexCoord) * HatchWeights0.z;
float4 hatchTex3 = tex2D(Hatch3,TexCoord) * HatchWeights1.x;
float4 hatchTex4 = tex2D(Hatch4,TexCoord) * HatchWeights1.y;
float4 hatchTex5 = tex2D(Hatch5,TexCoord) * HatchWeights1.z;

// Combine all patterns, the final color is simply the sum
// of all hatch patterns.   
float4 hatchColor = hatchTex0 +

hatchTex1 +
hatchTex2 +
hatchTex3 +
hatchTex4 +
hatchTex5;

return hatchColor;
}

After it’s compiled, this shader gives you a teapot
shaded with appropriate hatching in proportion to the
lighting on the object. Your result should be similar to
the one shown in Figure 14.11. The complete version
of this shader is on the CD-ROM as shader_4.rfx.

It’s Your Turn!
It’s now your turn to take the wheel! The following exercises will let you explore the topic
of non-photorealistic rendering on your own. The solutions to these exercises can be
found in Appendix D.

Exercise 1: DEPTH-BASED OUTLINE
In this chapter, I discussed several approaches that can be taken to render object outlines
when dealing with non-photorealistic rendering. We have only implemented the 
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Figure 14.11  Rendering result
for the real-time hatching shader.
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image-space-edge detection technique. For this example, you are asked to complete a new
silhouette rendering technique using depth information to render the objects outline.

The idea behind this outline technique is similar to the one used in the shader you devel-
oped. The difference is that you will initially render the depth of the object to a render tar-
get, instead of a solid color, and use an edge detection filter to create an outline. The
advantage of this approach is that it enables you to render edges on the visual border of
the object and allow for any sharp variation of depth.

When rendering the final outline, you may also wish to use an anti-aliasing, or blur, filter
to increase the smoothness of the outline. You may wish to experiment with different
types of blur filters as you complete this shader.

Exercise 2: SILHOUETTE AND TOON SHADING
So far, you have implemented both outline rendering and toon shading techniques. For
this exercise, you are being asked to combine them. Start with the outline shader devel-
oped in the previous exercise and combine it with simple toon shading. The task itself is
simple but will require you to deduce a proper set of rendering states so that both the toon
shaded object and outline combine properly together.

What’s Next?
When rendering a scene, most of the time you will strive to create an output that looks as
realistic as possible. This makes sense because you want to produce an environment that
is immersive and draws the user in. However, this principle does not apply to all cases.
Sometimes you need to adapt to a specific style that is required. In such a case, style often
becomes more important than the techniques employed.

Probably one of the most obvious cases is when you want to render a cartoonish scene. In
this case, it isn’t about realism anymore but about creating a style that closely matches
what you want to mimic.

In this chapter, I have shown you how to render the outline of an object, in addition to
some of the basic principles involved in toon shading. All those concepts are simple and
can easily be applied to any type of object. In the second half of the chapter, I showed you
how to apply similar techniques to render your objects in a hatching style, re-creating the
look of hand-drawn images. These techniques can go a long way to give your graphics a
unique style of their own.

In the next chapter, I will be introducing a basic atmospheric effect that can be used by
everyone in many circumstances: Fog. I will cover both simple global scene fog and more
advanced topics such as volumetric fog.
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So far throughout this book, I have discussed specific topics in very distinct

categories. By now, your understanding of shaders should be sufficient to

allow you to create all sorts of effects. In this section, I will overview many

different topics. Although this section is named “Advanced Topics,” it could have

been named “Miscellaneous Topics.” Some of the chapters cover more advanced

topics, while others cover topics that didn’t fit in anywhere else.

In Part IV, I will cover various topics, ranging from animations to shadows. Com-

bined with your current knowledge of shaders, by the time you reach the end of

Part IV, you will have a complete library of techniques and skills required to excel

in the art of shader writing.

One thing you will need to know is that some of the techniques exposed in the fol-

lowing chapters cannot currently be implemented on RenderMonkey. Future ver-

sions of this tool will likely give you the functionality needed to do so, but I wanted

to cover certain topics anyway for your general knowledge.
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Watch Out for 
That Morning Fog

chapter 15

Many factors come into play when rendering a scene. When dealing with spe-
cific objects, lighting and materials are very important. However, most of the
effects discussed so far in this book do not take into account the scene as a

whole. When rendering a complex scene, you need to consider global factors that may
affect your objects.

Fog is an important aspect of rendering that is often neglected. In addition, it has often
been used in the past as a way to optimize performance by restricting how far you can see.
This use has given fog a bad name over the years because of its incorrect overuse. The 
reality is that fog does exist in real life and can contribute a great deal in enhancing the
realism of a rendered scene.

Throughout this chapter, I will introduce you to the basic concepts of fog and how such
phenomena occur in real life. Armed with this knowledge, you will understand various
fogging techniques, ranging from hardware-accelerated fog to a volumetric fogging tech-
nique.

We’ll start with a few of the fundamentals behind fog. The next section surveys the basic
concepts behind fog and its existence.

The Basics of Fog
The existence of fog and haziness is something we all take for granted without under-
standing the physics behind these natural effects. The reality is that although fog seems to
appear out of thin air, its existence is much more complex. We’ll save the math behind the
principles for later in this chapter when I discuss the topic of estimating real atmospherics.
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All atmospheric effects, whether fog or haziness, come from the same basic concept.
Although air itself is transparent, many particles actually float around in it. These parti-
cles have an effect on the incoming light through one simple effect, scattering. As shown
in Figure 15.1, light traversing the air hits some of those floating particles and gets 
redirected.

In Figure 15.1, you can see that this interaction has two consequences. First, some of the
light coming at the viewer straight from the light is deflected away, thus reducing the per-
ceived light intensity. The second effect is that light not oriented at the viewer is deflected
back towards the viewer.

Ever noticed how the clouds appear orange at sunset? This is because of this exact effect.
As Figure 15.2 shows, light from the sun makes it to the clouds and then is scattered inter-
nally until it gets retransmitted to the viewer. The result is that the clouds get an orange
tint as if they were glowing. The orange color at sunset coming from the angle of the sun
as it sets.

Of course, this effect depends on two major factors. The type and density of the particles
in the air make a difference; water reacts with light differently than dust does. The other
factor that influences the fogging effect is the thickness of the material. Thicker material
deflects more light.

This information should give you a basic understanding of the principle behind scatter-
ing and how particles in the air can create fog. As with most effects we have done so far,
our concern is more about approximating the result than re-creating it perfectly.
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Figure 15.1  The interaction of light with particles floating in the air.
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This is even more important when dealing with atmospheric scattering, which can yield
very complex equations. I will discuss better mathematical guesses for outdoor atmos-
pheric effects at the end of this chapter, but for now, let’s focus on emulating simple fog
using your rendering hardware.

Hardware Fog
Most 3D video cards have built-in hardware support for fog. It would be ridiculous not to
take advantage of it to add atmospherics to your scene at near-zero cost. In fact, the only
cost to you is the computation of the fogging intensity; the calculation as to how this fog
is applied to the end result is done automatically by the rendering hardware. The hard-
ware, depending on its level of support, allows several forms of basic fogging to be applied
to your geometry.

Based on current specifications, hardware can support both per-vertex and per-pixel fog-
ging models. Keep in mind that per-vertex means that the fog intensity is determined for
each vertex but is still interpolated for each pixel. Per-pixel implies that the fog value is
determined on a per-pixel level based on the perspective interpolated distance value. This
can be more expensive because you must determine the fogging intensity for each pixel in
your scene instead of taking advantage of the vertex interpolation.
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Figure 15.2  Why the scattering of light makes clouds orange at sunset.
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The fogging hardware can be controlled through a set of render states defining many
parameters. The first parameters are to enable the fogging hardware and control the start
and end of the fog region. They are named D3DRS_FOGENABLE, D3DRS_FOGSTART, and
D3DRS_FOGEND. This region, defined by the start and end render states, establishes where the
fog effect starts becoming visible and at which point it is at full intensity.

Notice that the start and end values defined through the render state are defined as cam-
era space distances, not world space distances. Figure 15.3(a) illustrates how the depth is
determined relative to the camera. Notice that the fog value is determined as the projected
depth on the screen, leading to a planar fog start and end plane. The reality is the fog is
proportional to the distance from the camera and should yield a circular fog start and end
plane, such as that shown in Figure 15.3(b). If the hardware supports it, you can turn on
such a radial mode with the D3DRS_RANGEFOGENABLE render state.

n o t e

RenderMonkey does not tell you if your hardware supports radial fog. You must either refer to your
rendering hardware specifications or simply give radial fog a try. If it doesn’t work, it probably isn’t
supported.

One thing missing from our discussion so far is how the fog gets colored. The hardware
enables you to control the color by using the D3DRS_FOGCOLOR render state, which can be set
to any valid color. Keep in mind that this is the color to be used when full fog is present.
As fog creeps in, this value is blended with your object’s color in a way proportionate to
the fog ratio determined by the hardware.
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Figure 15.3  How hardware fog is determined based on the distance from
the camera. (a) Camera space fog. (b) Range-based fog.
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One assumption about the hardware fog so far is that its progression is linear. This is, in
fact, the default behavior of the rendering hardware. However, the D3DRS_FOGTABLEMODE
allows you to adjust the fog progression to be either linear or exponential. Although expo-
nential fog generally looks more realistic, it can have some additional costs associated with
it. Figure 15.4 illustrates the different fogging modes available on most hardware.

The last thing I should mention is how this fog actually gets applied to your scene. Because
fog essentially affects the light coming in to the viewer, it is computed based on the fog
thickness between the object and the viewer. After you determine the regular rendering
result of the object, the fog thickness is determined and used to blend the object color
with the fog color based on the fog progression mode chosen.

Under normal circumstances, the use of hardware fog is simply a matter of setting a few
render states and letting the hardware take care of the rest. However, the situation is some-
what different when dealing with a vertex shader.

Because of the programmable nature of vertex shaders, you cannot simply set render
states and have the fog render. Because the hardware has no control over the rendering of
the geometry, an output register with the semantics of FOG has been created. It is your
responsibility to set this value to the appropriate fog level. This has the effect of overrid-
ing the following render states: D3DRS_FOGSTART, D3DRS_FOGEND, and D3DRS_FOGTABLEMODE. When
using vertex shaders, you need to determine the proper fogging value yourself. It may
mean a little more work, but in the end, it gives you much more flexibility. After you set a
value for your FOG output variable, the hardware automatically blends in the appropriate
amount of fogging.
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Figure 15.4  The various fog progression modes available on current hardware.
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Note that the FOG output variable works upside down, the opposite of what you expect. A
value of 1 means no fog, and a value of 0 means full fog. This FOG output value is interpo-
lated, and the final blending with the fog color is done automatically by the hardware.

With this in mind, a simple linear fog can be determined with the following code:

Fog = 1.0 - ((Pos.z-Fog_Start)/(Fog_End-Fog_Start));

With all this information, you are now set to start writing your shader. The first step is to
create a new workspace with the basics you need to render one or two objects.

After you create your basic shader, you should have your object rendering on the screen.
To add fog, you need to change a few of the render states associated with your effect. To
do this, you will need to add a render state node and set up the following render states:
D3DRS_FOGENABLE and D3DRS_FOGCOLOR.

All you need to do now is set the FOG output variable to the proper fog level. The first step
in doing this is to add the FOG variable to the output structure. The following code illus-
trates this updated structure:

struct VS_OUTPUT 
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;
float1 Fog:     FOG;

};

To set the FOG variable, you can either create a fog start and end variable or simply choose
a simplified equation to determine the fogging level, which I have done for this particular
shader. Doing so yields the final vertex shader code:

float4x4 view_proj_matrix;
struct VS_OUTPUT 
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;
float1 Fog:     FOG;

};

VS_OUTPUT vs_main( 
float4 inPos: POSITION, 
float2 Txr1: TEXCOORD0

)
{

VS_OUTPUT Out;
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float4 Pos = mul(view_proj_matrix, inPos);
Out.Pos = Pos;
Out.Txr1 = Txr1;

// Set the fog based on a zero fog start and
// fixed end distance
Out.Fog = pow(1-((Pos.z)/650),4);

return Out;
}

Because the fogging is actually handled by the hard-
ware, the pixel shader code does not need to do any-
thing special beyond sampling the object’s texture and
outputting its color. Compiling and running your new
shader should give results similar to the one shown in
Figure 15.5. The final version of the shader is included
on the companion CD-ROM as shader_1.rfx.

Not Just Your Everyday Fog
The use of hardware fog when dealing with vertex
shaders is more complicated than performing the same
process using the fixed pipeline. Although this extra
work may seem involved, it has several advantages.

Because you are the one supplying the fog factor to hardware, you have control over the
equation used to determine how much to blend in. In the previous section, you used this
in combination with the object’s depth to determine the fog, but the system itself is totally
flexible.

Using the FOG output variable, what restricts you to using depth as the criteria for deter-
mining the fogging intensity? For example, morning or evening dew leaves fog that dissi-
pates as you get higher from the ground. Using the height from a certain point, you can
decide the appropriate fog level. The following snippet explains how you can do this:

Fog = 1 - (Pos.y-Height_Start)/(Height_End-Height_Start);

Taking this into consideration, you can easily write a shader that fogs objects based on
their relative height. The following vertex shader illustrates how this can be done:

float4x4 view_proj_matrix;
struct VS_OUTPUT 
{

float4 Pos:     POSITION;
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Figure 15.5  Rendering the
hardware-accelerated fog shader.
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float2 Txr1:    TEXCOORD0;
float1 Fog:     FOG;

};

VS_OUTPUT vs_main( 
float4 inPos: POSITION, 
float2 Txr1: TEXCOORD0

)
{

VS_OUTPUT Out;

float4 Pos = mul(view_proj_matrix, inPos);
Out.Pos = Pos;
Out.Txr1 = Txr1;

// Set the fog proportional to the Y height.
// With a vertex shader, the fog can be set to
// any value you wish. Because you wish a screen
// height in the proper range, you must divide the
// Y component by the W component to take perspective
// into account.
Out.Fog = (2*Pos.y/Pos.w)+1;

return Out;
}

Applying this new shader code to the shader you pre-
viously developed yields a height-based fog similar to
the one shown in Figure 15.6. The final version of the
shader is included on the companion CD-ROM as
shader_2.rfx.

As you can see, this added flexibility may require a lit-
tle more work but can go a long way toward giving you
total control over how you render fog. In the first exer-
cise at the end of the book, you will be asked to use a
vertex shader to develop another fogging variation.

Now that you know how the hardware creates its fog
and how you can take advantage of it, how about
doing your own volume-based fog from scratch? 
The next section explains a technique that can render
a volume-based fog.
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Figure 15.6  Rendering our
height-based fog shader.
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Giving Your Fog a Little Depth
So far, all our fog calculations have been based on the assumption that the density of the
air particles was constant. We also assumed that the fog was constant across the whole
scene. Although this may make sense when dealing with a global atmospheric effect,
sometimes when dealing with other effects, such as clouds or shafts of light, you want to
have better control over the fog’s location, shape, and density.

To achieve something like this, you need to be able to create your fog in a volumetric way.
Unfortunately, for something like this, you cannot count on support from the hardware
and will need to generate it yourself.

Because you want the fog to be volumetric, you can simply give it shape by using regular
geometry to define its outline and render it. The process to do this is simple; as Figure 15.7
shows, you need to determine the thickness of the fog at any point of the geometry. The
real question becomes how you accomplish this.

Taking the depth of the mesh at each point when rendering, you can discover the thickness
by determining the difference between the depth of the polygons of the front and the back
of the model. If you are dealing with a non-convex object, as in the Figure 15.8 example,
you need to consider the fact that there may be multiple entry and exit points to the mesh.
To accommodate for this, you need to take the sum of the depths of each back and front
face, thus adding up all the depths for each entry/exit. Taking the difference of these front
and back depth values will then yield you the total thickness at any point for your mesh.

With this basic knowledge, how do you go about rendering such a fog volume? The
answer lies in using render targets to store the depth of the fog object. By using two ren-
der targets, one for the depth of the front-facing faces and one for the back-facing ones,
you can render your object twice and save the depths.
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Figure 15.7  How to render volumetric fog using geometry.
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To render those two render passes, you need to store the depth of the object in the render
target; this is simply a matter of using the depth stored in the Z-coordinate of the pro-
jected vertex position as a color to put into the render target. Another thing you need to
do is set up an additive blending mode so that multiple depths for concave objects add
together correctly. This is done by setting the following render states:

D3DRS_ALPHABLENDENABLE = TRUE
D3DRS_BLENDOP = ADD
D3DRS_SRCBLEND = ONE
D3DRS_DESTBLEND = ONE

This combination of render states causes the different layers to be added together. For
instance, the new value for the render target is the sum of the old value in the render tar-
get added to the newly calculated depth value.

Also remember that each pass needs to render either the front or back faces of your object.
This can be controlled by D3DRS_CULLMODE. The vertex shader for the depth render passes
simply need to transform the position of the vertices and pass the depth on to the pixel
shader. The following vertex shader does just that:

float4x4 view_proj_matrix;
struct VS_OUTPUT 
{

float4 Pos:     POSITION;
float Depth:   TEXCOORD0;

};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

float4 Pos = mul(view_proj_matrix, inPos);
Out.Pos = Pos;

// Output the depth value by dividing it by a large
// enough constant to ensure it is in the zero-to-one
// range.
Out.Depth= (Pos.z/800);

return Out;
}

The pixel shader simply needs to take this depth and output it as a color. The following
pixel shader code performs this:
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sampler Texture0;
float4 ps_main( float Depth: TEXCOORD0 ) : COLOR0
{

return Depth;
}

So far, you have the front and back depth for your fog volume object. To determine the
fogging factor, you need to find out the actual thickness of the object. This can be accom-
plished by a third render pass; calculate the difference between the depth of the back poly-
gons and front polygons for both depth render targets. When you’ve determined this
thickness, you can determine the fog factor for a particular pixel by multiplying the thick-
ness by a factor that controls the thickness-to-fog ratio. You might also want to use a
lookup texture if you want to use a nonlinear thickness-to-fog ratio.

The vertex shader for this pass is a simple screen-space rendering pass. The pixel shader,
on the other hand, samples both the front and back depth, calculates the difference, and
outputs a color based on the fog intensity. The pixel shader code for this operation is

sampler Front;
sampler Back;
const float off = 1.0 / 128.0;
float4 ps_main( float2 TexCoord : TEXCOORD0 ) : COLOR
{

float4 F = tex2D(Front,TexCoord);
float4 B = tex2D(Back,TexCoord);

// The thickness is defined as the front depth minus
// the back depth. We multiply by 16 to increate the
// contrast so the thickness can be seen better.
return (F-B)*16;

}

After it’s compiled and running, this shader should
give you a fogged-up version of your volume object, as
shown in Figure 15.8. The final version of the shader is
included on the companion CD-ROM as shader_3.rfx.

Notice in Figure 15.8 and from your rendering output
that the fog generated in the previous exercise exhibits
a lot of banding. Because the depth is computed in a
single component and output to the texture color, this
gives you only eight bits of precision, which is usually
less than adequate for such a task. You need to find a
way to work around this problem and increase your
depth precision, but wait. . . .
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Figure 15.8  Rendering a
volumetric fog object.
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Didn’t we use a technique to do just this in Chapter 6, “Blurring Things Up”? By taking
advantage of the different color components to store different levels of precision for your
depth, you can increase your total precision. The following code can be used to encode
your depth into several components:

Depth.x = floor(Depth*32.0)/32.0;
Depth.y = floor((Depth-OutDepth.x)*32.0*32.0)/32.0;
Depth.z = floor((Depth-OutDepth.x-OutDepth.y/32.0)*32.0*32.0*32.0)/32.0;

In the preceding code, you will notice that we only use 32 values for each component, thus
only using five bits of precision. Doing so enables you to support the addition of several
depth values together. You can do this as long as the values within any color component
do not overflow. Using only five bits of precision allows for up to 8 depth values to over-
lap without risking overflows. The decoding process, shown in the following code, takes
care of compensating for the addition of multiple depth values:

float Depth = DepthTxr.x + DepthTxr.y/32.0 + DepthTxr.z/(32.0*32.0);

Applying this to the previous shader requires you to change the pixel shader for your
depth rendering passes to encode the depth received from the vertex shader into the dif-
ferent color components. The following code shows the resulting pixel shader:

sampler Texture0;
float4 ps_main( float Depth: TEXCOORD0 ) : COLOR0
{

float4 OutDepth;
OutDepth.x = floor(Depth*32.0)/32.0;
OutDepth.y = floor((Depth-OutDepth.x)*32.0*32.0)/32.0;
OutDepth.z = floor((Depth-OutDepth.x-OutDepth.y/32.0)*32.0*32.0*32.0)/32.0;
OutDepth.w = 1;
return OutDepth;

}

The other change that you need to apply is to the final pass so that it decodes the depth
values to determine the thickness of the volume object. The following pixel shader does
just this:

sampler Front;
sampler Back;
const float off = 1.0 / 128.0;

float4 ps_main( float2 TexCoord : TEXCOORD0 ) : COLOR
{

float4 F = tex2D(Front,TexCoord);
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float4 B = tex2D(Back,TexCoord);

float DepthF = F.x + F.y/32.0 + F.z/(32.0*32.0);
float DepthB = B.x + B.y/32.0 + B.z/(32.0*32.0);
return (DepthF-DepthB)*16;

}

The compiled version of this shader
gives a result similar to that shown in
Figure 15.9. The final version of the
shader is included on the companion
CD-ROM as shader_4.rfx. As you can see
from the output, the generated fog is
much more precise than with the previ-
ous shader, and all this with little extra
work.

So far you have only rendered volume
fog as an individual object, but in reality,
your fog needs to interact with other
geometry. The technique overviewed,
does not take care of this situation but
fortunately, there is a simple solution to
the problem.

When rendering the scene, you need to render the depth of your solid objects to a sepa-
rate render target in addition to the scene. The process for this is the same as that taken
for the actual fog depth rendered in the previous shaders. With this information, you can
adapt the fog depth shaders to consider the depth of the scene.

With the scene depth, you can determine the proper fog depth by comparing the depth of
the fog object with the precomputed depth of the scene. If the depth of the fog is greater
than the scene depth, you will store the scene depth. If the depth of the fog is less, you will
use the fog.

On the vertex shader end, you need to modify your code so that screen space coordinates
are passed to the pixel shader. The reason for this is that you need those coordinates to
sample the scene depth texture previously calculated. This vertex shader is

float4x4 view_proj_matrix;
struct VS_OUTPUT 
{

float4 Pos:     POSITION;
float  Depth:   TEXCOORD0;
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float2 TexCoord:   TEXCOORD1;
};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

// Position the second object with a slight offset
// so the no not fully overlap.
inPos.x -= 10.5;

float4 Pos = mul(view_proj_matrix, inPos);
Out.Pos = Pos;
Out.Depth = (Pos.z/1000);
Out.TexCoord.x = 0.5 * (1 + (Out.Pos.x/Out.Pos.w));
Out.TexCoord.y = 0.5 * (1 - (Out.Pos.y/Out.Pos.w));
return Out;

}

The pixel shader also needs to be modified to receive the new texture coordinate and sam-
ple the scene depth map. After you have the depth for the scene, you need to decode it and
compare it with the current fog depth. Because you are using a 2.0 pixel shader, this can
easily be done with a conditional statement, such as if or expr?true_val:false_val. The fol-
lowing pixel shader does just that:

sampler Texture0;
float4 ps_main( 

float Depth: TEXCOORD0,
float2 Txr: TEXCOORD1

) : COLOR0
{

float4 OutDepth;
float4 SolidDepthTxr = tex2D(Texture0,Txr);
float SolidDepth = SolidDepthTxr.x + 

SolidDepthTxr.y/32.0+
SolidDepthTxr.z/(32.0*32.0);

OutDepth.x = floor(Depth*32.0)/32.0;
OutDepth.y = floor((Depth-OutDepth.x)*32.0*32.0)/32.0;
OutDepth.z = floor((Depth-OutDepth.x-OutDepth.y/32.0)*32.0*32.0*32.0)/32.0;
OutDepth.w = 1;
return (Depth>SolidDepth)?SolidDepthTxr:OutDepth;

}
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After it’s compiled and running, this shader should
render an object with a fog volume intersecting it, sim-
ilar to the one shown in Figure 15.10. The final version
of the shader is included on the companion CD-ROM
as shader_5.rfx.

As you can see, volumetric fog can be a powerful tool
that enables you to create patchy fog or clouds within
your scene. So far, I have discussed atmospheric effects
without going into any specifics. The next section pre-
sents those topics in a bit more detail.

Rendering the Atmosphere
The focus of this chapter is the rendering of atmos-
pheric effects. So far, we have only concentrated on
gross approximations, making use of hardware and volumetric fog. In this section, I will
discuss briefly some techniques that can be used to render real outdoor atmospherics
using better approximations. Even the estimation of outdoor atmospherics is a complex
topic, and I will not go too deeply into details, but I do want to introduce you to some of
the basic concepts so that you will have a better understanding of all their implications.
For this section, I will not implement a full shader for the approaches discussed because
it is not a trivial task to perform with RenderMonkey.

Different atmospherics come from the scattering of light when it encounters particles,
either water vapor or dust, in the ambient air. As Figure 15.11 shows, this scattering can
be categorized as either primary or secondary. Primary scattering occurs when light gets
scattered once before reaching the viewer. Secondary scattering occurs when the light is
deflected more than once before reaching the viewer.

Accurately considering all the scattering components is impossible in real-time . Such cal-
culations imply the use of continuous integration to calculate the interaction of light with
the atmosphere. Because of this, some assumptions must be taken to simplify the calcula-
tions.

There are several different approximations and models, which could be used to represent
atmospherics. Because of this, I could write a whole separate book on this specific topic.
Instead, I will just discuss a simple, commonly used model to give you a good idea.
Pokrowski proposed a simple model to represent the sky’s luminescence model, known as
the CIE Clear Sky Luminescence Model. This model does a good job of approximating the
sky color for a clear day. The equation for the model is illustrated in Figure 15.12. This
model is simple to evaluate but requires you to determine many angles relating to the
viewer and the sun.
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Figure 15.10  Rendering the
volumetric fog shader interacting
with a solid object.
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There are a wide range of different models that can be used to render outdoor atmos-
pherics, all varying in realism and complexity. The CIE model is simple and gives good
results for the sky atmospherics in a clear sky environment.

The topic of rendering atmospherics is a complex one, and an in-depth discussion is beyond
the scope of this book. With the material covered in this chapter, however, you should have
sufficient basic knowledge to extend your research if the need is there. For more informa-
tion on the topics reviewed in this chapter, I invite you to read the Siggraph paper at:
http://www.ati.com/developer/SIGGRAPH03/PreethamSig2003CourseNotes.pdf.
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Figure 15.11  The primary and secondary scattering of light in the atmosphere.

Figure 15.12  Illustration of the CIE atmospheric model
and its equations.
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It’s Your Turn!
The following exercise will let you explore the topic of atmospheric rendering on your
own. The solutions to this exercise can be found in Appendix D.

Exercise 1: ROUND FOG
For this exercise, you are asked to expand the hardware-accelerated fog shader developed
earlier in this chapter. You need to render your object in a way so that the fog is in a cir-
cular pattern around the center of the object. To do so, you need to take the distance of
the object from the center of the screen, using its screen space position and scaling appro-
priately to ensure you have enough fogging.

What’s Next?
As you can see from this chapter, rendering proper atmospheric effects goes a long way in
making your scene renderings look more realistic. The current rendering hardware is set
up to make your life easy by automating the process. Using vertex shaders helps you even
more by giving you full control over the fogging factor used by the hardware.

Although hardware fogging is flexible, it cannot represent everything, especially patchy
fog or clouds. To render such effects, you can use volumetric fog objects to give you full
control over the position and shape of your fog. Taking advantage of the vertex and pixel
shader version 2.0 architecture, along with the use of render targets, makes the process 
relatively simple.

When rendering outdoor scenes, it might be nice to be able to capture the effects of
atmospheric scattering. Considering real atmospheric effects can be nearly impossible in
real-time. However, using a proper approximation such as the CIE illumination model
can give sufficient results for use at real-time speeds.

So far, all of our scenes have been mostly static where nothing moved or animated. In the
next chapter, we will address this and introduce you to several animation techniques that
you can use in your shaders.

What’s Next? 279

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



281

Moving Objects 
Around

chapter 16

So far, all the previous chapters focused on the looks of an object, ranging from
materials to atmospheric effects. All these shaders give you nice graphics but leave
you with a static, nonmoving scene. In this chapter, I will introduce to you some

animation techniques that are commonly used in computer graphics and can be opti-
mized by taking advantage of the hardware acceleration of vertex shaders.

Although I have touched upon the topic of vertex animation when introducing proce-
dural materials and noise functions, this chapter will introduce techniques that can be
used to animate the mesh as a whole.

Unfortunately, at the time of the writing of this book, RenderMonkey has no built-in sup-
port for animation. Because the situation is likely to change with future releases of the
tool, I still want to introduce you to the topic of animations and give you code snippets
that may come in handy later on.

Light, Camera, Action!
Because the topic of this chapter is animation, it makes sense to start with a simple form
of animation. Remember that we previously discussed procedural vertex animations in
Chapter 13, “Building Materials from Scratch”? Let me refresh your memory.

Using a Perlin noise function and a time-based variable such as time_0_1, you can offset
vertices of an object at run-time. Although this particular example had little significance,
such techniques could be used to create procedural explosions or animate objects that dis-
tort as they move, such as a water balloon. For reference, here is the vertex shader code
used in the previous chapter:

struct VS_OUTPUT
{
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float4 Pos:    POSITION;
};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

// Define a noisy function based on a sequence
// of sine waves and manipulate the surface based
// on the result
inPos = inPos +

0.05*sin( dot(inPos.xy,inPos.xy) + time_0_2PI) +
0.05*sin( dot(inPos.xz,inPos.xz) + time_0_2PI) +
0.05*sin( dot(inPos.yz,inPos.yz) + time_0_2PI );

// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}

Keep in mind that a sine-based noise function was used for this particular shader. How-
ever, nothing prevents you from using a function with more significance or even from
using a set of shader constants that are set by the processor to control the distortion
applied to your mesh.

Another simple procedural animation that could be applied to an object is to use a func-
tion to control the actual position of the object. Let’s say you are rendering a solar system;
you could manually animate each planet, but because they all follow a simple circular
path, why not let the shader handle it?

Using a built-in variable such as time_0_2PI, you can input this offset time value into a
sine/cosine function to determine the position along a circular path. The following vertex
shader code illustrates how this can be done:

struct VS_OUTPUT
{

float4 Pos:    POSITION;
};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

float4 center_offset = float4(0,0,0,0);
float radial = time_0_2PI + time_offset;
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// Determine the position on the circle based
// on the time value. This assumes the circle
// is along the X/Y plane.
center_offset.x = radius * sin(radial);
center_offset.y = radius * cos(radial);

// Offset all vertices by the same circle constant.
inPos = inPos + center_offset;

// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}

As you can see, even simple hardware-accelerated animations can do a lot for a scene, not
only in making it dynamic but also in taking work off the main CPU. This may not seem
like much, but when developing video games, any ounce of CPU power you can spare can
be used for important tasks such as artificial intelligence or game physics.

Now let’s move on from this simple form of animation to something that is more useful.
Not everything is composed of randomly deforming meshes or rotating planets. The real-
ity is that you may want to animate characters on your screen. The bad news is that you
need to do much more work to animate them because of their complexity. On the good
side, there are several good techniques available that can be used in collaboration with
hardware acceleration. The next two sections overview two of the most common tech-
niques: keyframing and skinning.

Object Metamorphosis
Although there are countless ways to animate geometry, you must strive to use techniques
that can easily be optimized to work well on the rendering hardware. One of the most nat-
ural techniques for this is keyframing.

Keyframing is similar to the way still frame animations are done. Under ideal circum-
stances, you store the mesh for each position, or frame, within your animation. When it is
time to replay your animation, you simply pick which mesh corresponds to the frame you
want and render it. But this ideal case is less than ideal for hardware optimization.

Imagine a 1,000-vertices mesh that you want to animate for 10 seconds at 20 frames per
second. If all the information for a vertex requires 16 bytes, which should be enough for
a position, normal, and color, the total size of the animation would be approximately
3MB. And that’s only for a simple 10-second animation!

Because most animations are fluid, there is one way to improve this situation. Instead of
storing all the frames of the animation, you may want to take advantage of the fluidity of
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the animation and only store the important, or significant, frames of the animation. These
significant frames, commonly called keyframes, give you a snapshot of the mesh at a cer-
tain point of the animation. Because of the fluidity of the animation, you may only need
to store, say, two keyframes for every second of animation, significantly reducing the mem-
ory requirements for the animated mesh. Figure 16.1 explains the keyframing process.

When the time comes to render the animation, based on the current animation time, you
need to determine the two keyframes which the animation falls between. The idea is that
the vertex shader needs to take those two frames and interpolate between them, based on
a ratio determined by the animation time. For this to happen, the geometry for both
frames needs to be passed to the vertex shader, which will then interpolate between the
two. The easiest, but not necessarily the best looking, form of interpolation is a simple lin-
ear interpolation. To do this, you can take advantage of the HLSL built-in lerp function.
The following vertex shader code illustrates how the positions of two keyframes can be
interpolated:

struct VS_OUTPUT
{

float4 Pos:    POSITION;
};

VS_OUTPUT vs_main(float4 inPos_1: POSITION,
float4 inPos_2: POSITION)

{
VS_OUTPUT Out;

// Blend the two animation frames together
float4 inPos = lerp(inPos_1,inPos_2,animation_blend);
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// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}

As I have said, there are multiple ways to interpolate animation data from the animation.
Using linear interpolation is the simplest way but can lead to discontinuities at keyframes.
Figure 16.2 illustrates this problem and how a nonlinear interpolation technique can help
improve keyframe transition.

n o t e

Under Direct3D, the best way to send data to the vertex shader for two keyframes is to take advan-
tage of multiple streams. Streams enable you to specify vertex information from different sources.
Taking advantage of this functionality makes it easy to combine multiple keyframes together.

One solution is to use a spline interpolation technique. This technique yields much better
interpolation across keyframes but has a few consequences. The first side effect is that
keyframes need to be equally spaced in time for the interpolation to work properly. In
addition, you need the information of four keyframes to complete the task, two previous
vertices and the two following ones. The following vertex shader code shows you the equa-
tion for the Hermite spline interpolation and how it can be used:

struct VS_OUTPUT
{

float4 Pos:    POSITION;
};
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VS_OUTPUT vs_main(float4 inPos_m1: POSITION,
float4 inPos_0: POSITION,
float4 inPos_1: POSITION,
float4 inPos_2: POSITION)

{
VS_OUTPUT Out;

// Precompute the spline basis functions
float h0,h1,h2,h3;
{

// h0 = 2t^3 – 3t^2 + 1
h0 = 2*pow(time,3) – 3*pow(time,2) + 1;

// h1= -2t^3 + 3t^2
h1 = -2*pow(time,3) + 3*pow(time,2);

// h2 = t^3 – 2t^2 + t
h2 = pow(time,3) – 2*pow(time,2) + time;

// h3 = t^3 – t^2
h3 = pow(time,3) – pow(time,2);

}

// Blend the keyframes with the Hermite spline equation
float4 inPos = h0*inPos_0 +

h1*(inPos_1 – inPos_m1) +
h2*(inPos_2 – inPos_0) +
h3*inPos_1;

// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}

The cool thing with keyframe interpolation-based animation is that you can animate
more than just the position of your object. Any component that can be interpolated can
be animated. Because each keyframe can have a full set of vertex information, such as
color, you can interpolate it as well. However, you need to be cautious when interpolating
vertex normals. Because a normal is meant to be normalized, the linear interpolation of a
normal can yield a vector that isn’t normalized. You generally need to renormalize your
vectors after they have been interpolated. The following code snippet shows you how:

float3 normal = normalize(lerp(inNormal1,inNormal2,animation_blend);
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Although this animation technique gives you a great amount of flexibility, even with
proper keyframing it can consume large amounts of memory. This is especially true in
today’s rendering environment where meshes are getting denser. Because of this, other
techniques are needed to animate meshes in a way that requires fewer resources.

In the next section, I will discuss a commonly used technique called skinning. This tech-
nique can be somewhat more restrictive but works well when animating characters and is
much more memory efficient.

Of Skin and Bones
Although keyframing is a great and flexible animation technique, it can be very memory
consuming and prohibitive. Say you want to animate a humanoid character in your scene;
you may need something more efficient. Because a humanoid character is actually skin
and muscle on top of skeletal structure, wouldn’t it make sense to mimic this to animate
your character?

Say you have a mesh of your character; you could
construct an imaginary skeletal structure under-
neath it that supports it. You can then attach the
vertices of your mesh to this set of bones. Once
the vertices are attached, instead of animating the
mesh, you can animate the bone instead. The
attachment process takes care of animating the
mesh automatically. Figure 16.3 shows how this
works.

Because you are animating the skeleton instead of
the mesh itself, the memory requirements are
much less than they would be to represent the ani-
mation on the whole mesh. Another significant
advantage of this technique is that for a generic
skeletal structure, you can animate a multitude of
meshes. For example, if you were to define an ani-
mation skeletal structure for a human character,
you can wrap any humanlike mesh on top of this
skeleton. This is a great advantage because it enables you to reuse common animations,
such as walking and running, with a multitude of different characters.

On the downside, skinning has some disadvantages. The first is obvious: You can only ani-
mate objects for which you can define a skeletal structure. The second inconvenience is
that for complex meshes, the number of bones required in your skeleton might be 
prohibitive, and sometimes, reducing the number of bones can yield unwanted results,
such as pinching of the mesh in some joints.
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One thing I have not discussed so far is how the mesh actually gets wrapped over the
skeletal structure. To get good animation results, especially at joints, you want vertices to
be influenced by potentially multiple bones. So let’s say a particular vertex can be influ-
enced by up to four bones. You need to store an index and a weight for the influence of
the four bones. Keep in mind that the total weights for a vertex should add up to one.

I will not go into the details of how to author such meshes, but most common 3D pack-
ages, such as 3DSMax by Discreet, support skinning and offer tools to construct skeletal
structures, animate them, and assign weights to the vertices on your mesh.

n o t e

Because bone animations are represented as matrices stored in vertex shader constants, you are
limited in the number of bones you can use. If you reach such a restriction, you need to break your
mesh into submeshes with smaller bone counts.

Assuming you have a mesh that has been constructed using such a tool and has been
exported, the weights and indices to the bone structure would be stored as two input vec-
tors in your vertex data. The bones themselves would be represented as matrices stored as
constants within your vertex shader. To animate the vertices, take the initial vertex posi-
tion and apply the transformation imposed by all four bone influences proportionally to
their weights. Doing so yield the following vertex shader code:

struct VS_OUTPUT
{

float4 Pos:    POSITION;
};

VS_OUTPUT vs_main(float4 inPos: POSITION,
float4 inIndex: BLENDINDEX,
float4 inWeight: BLENDWEIGHT)

{
VS_OUTPUT Out;

// Compute in the weight of four bones
float4 Pos = float4(0,0,0,0);
Pos += inWeight.x * mul(Bones[inIndex.x],inPos);
Pos += inWeight.y * mul(Bones[inIndex.y],inPos);
Pos += inWeight.z * mul(Bones[inIndex.z],inPos);
Pos += inWeight.w * mul(Bones[inIndex.w],inPos);

// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
return Out;

}
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When skinning a mesh, you might also want to animate the vertex normals because they
are essential to determine proper lighting. Mathematically speaking, to animate a normal
using the bone matrices, you need to calculate the inverse of the transpose of the bone
animation matrix. This is prohibitive to do in real-time, but there is a saving grace. If your
animation matrices only contain rotations and translations, it turns out that the inverse
of the matrix is the same as its transpose; this means that you can use the regular bone
matrix to animate the matrix in the same way you animate the vertex position. You just
need to remember to renormalize your vector after you are done. The following vertex
shader code does just that:

struct VS_OUTPUT
{

float4 Pos:     POSITION;
float3 Normal:  TEXCOORD0;

};

VS_OUTPUT vs_main(float4 inPos: POSITION,
float3 inNormal: NORMAL,
float4 inIndex: BLENDINDEX,
float4 inWeight: BLENDWEIGHT)

{
VS_OUTPUT Out;

// Compute in the weight of four bones
float4 Pos = float4(0,0,0,0);
Pos += inWeight.x * mul(Bones[inIndex.x],inPos);
Pos += inWeight.y * mul(Bones[inIndex.y],inPos);
Pos += inWeight.z * mul(Bones[inIndex.z],inPos);
Pos += inWeight.w * mul(Bones[inIndex.w],inPos);

// Compute in the weight of four bones for the normal
float4 Normal = float4(0,0,0,0);
Normal += inWeight.x * mul(Bones[inIndex.x],inNormal);
Normal += inWeight.y * mul(Bones[inIndex.y],inNormal);
Normal += inWeight.z * mul(Bones[inIndex.z],inNormal);
Normal += inWeight.w * mul(Bones[inIndex.w],inNormal);
Normal = normalize(Normal); // Renormalize the normal

// Compute the object position.
Out.Pos = mul(view_proj_matrix, inPos);
Out.Normal = Normal;
return Out;

}
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Skinning is a very efficient technique to animate characters within your scene. It does
require more initial setup and art work but will pay off in the memory savings. In addition,
you can potentially use the skeletal structure of your character and procedurally animate it
by combining several animations or by applying some form of inverse kinematics. Skin-
ning might seem more expensive by looking at the vertex shader code, but a four-bone
skinning shader can be implemented on the vertex shader 1.1 architecture.

It’s Your Turn!
Because most of the topics covered in this chapter cannot currently be implemented
under RenderMonkey, there is no homework for this chapter. Enjoy!!

What’s Next?
When developing 3D applications, most of the time you need your scene to be dynamic,
and animations are the key to making this come true. You might be able to settle for sim-
ple procedural animation when dealing with simple objects, such as a solar system, or
even procedurally deformed objects, such as a water balloon. However, most of the time,
this will not suffice, and you will need something more powerful, especially when render-
ing characters.

One approach that can be taken is to pre-animate your mesh at certain points in time, or
keyframes, from which your vertex shader will be used to procedurally interpolate
between two particular keyframes. This technique can need a substantial amount of
memory because of the mesh data required by all the keyframes. On the other hand, this
technique can be used to create complex deformation as long as the topology of the mesh
stays the same from one keyframe to another.

Another approach that can be taken is to use skinning. With this technique, you create a
skeletal support structure for your mesh and animate this structure instead of the mesh
itself. Each vertex is then assigned a set of weights corresponding to the contribution of
each bone-to-vertex position. This technique has some limitations that constrain the
number of bones which can be put into play and also restricts the amount of deformation
that can be applied. However, this technique is generally well suited for the animation of
living beings because it mimics their skeletal structure.

Because RenderMonkey does not support animations at the moment, it is not worth it to
focus more on animations for now. In the next chapter, I will take up the topic of lighting
again from a more advanced point of view by introducing some of the latest lighting tech-
niques, such as spherical harmonics.
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Advanced Lighting

chapter 17

Lighting is probably one of the most important visual cues. The techniques illus-
trated earlier in this book cover the most basic and commonly used lighting tech-
niques. However, there are many more approaches that can be applied to the

lighting of your rendered scenes. The goal of this chapter is to introduce you to some of
these techniques and how they can be used in current and future rendering architectures.

Keep in mind that the techniques overviewed in this chapter are new and emerging
approaches to lighting. This means that these techniques can be complex and have not
been thoroughly used in real-time rendering environments. This has the consequence that
many of the tools needed to use such techniques are not yet available. However, as they
gain more widespread use, more tools and support will become available for them to be
implemented in real-time production environments.

In the following section, I will discuss how you can create your own custom lighting
model by describing how you can use a hemisphere to represent the lighting of an envi-
ronment. In the next section, I will discuss polynomial textures. They can be used as an
alternative to bumpmaps and have the added ability to capture self-shadowing informa-
tion. Finally, in the last section, I will discuss how you can capture the diffuse environment
lighting of a scene and represent it in a simple form that can be computed in real-time.

Let’s move on and start by exploring a simple custom-built lighting model that can work
well for both outside and indoor scenes.
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Outdoor Scene Lighting
All the lighting models we have outlined so far stem from approximations based on real-
life lighting models. Quite often, however, by taking a look at an environment, you can
come up with your own approximation that will work well for the circumstances you are
in. This is essentially what I will show you in this section. We can create a new lighting
model that estimates lighting better for an outdoor scene.

Rendering objects in an outdoor environment can be tricky. Because of the interreflec-
tions of the objects in your scene, the lighting in the environment comes from all direc-
tions. To render accurate lighting on an object, you need to consider numerous amounts
of lights, which is, of course, prohibitive for real-time applications. To perform such light-
ing in real-time, however, you need to find an estimation that runs quickly enough to be
feasible in real-time.

Some General Approaches
One solution is to model your environment as a set of discrete directional lights and select
a set of lights that does a good job of approximating the global lighting for this environ-
ment. The problem with this approach is determining the number, positions, and colors
of those lights in the first place. Although there are ways to accomplish this, it is generally
a less than convenient technique.

A better approach is to make use of environment mapping techniques to light your object.
If your environment is already a cubemap, all is easy. If it is not, you can easily build one
on-the-fly as I discussed in Chapter 11, ”Mirror, Mirror, On the Wall.” However, the ques-
tion becomes, how can you represent diffuse and specular lighting through an environ-
ment map?

The cubemap itself can be used to represent a pure reflection, but when dealing with sim-
ple specular and diffuse lighting, you have to change your approach slightly. Specular
lighting is almost like reflection, but it is slightly more diffused, or fuzzy. To achieve this
perfectly, you need to run a partial integration on your cubemap to extract the specular
component. The integration process would, for each texel in your cubemap, traverse all
the other texels and add their contributions together proportionately to their contribu-
tion to the lighting.

Although this is doable, it can be prohibitively expensive. A simple solution to this is to
blur your environment map instead of integrating it; this doesn’t give you exactly the same
results but is close enough for lighting purposes. When dealing with diffuse lighting, you
need a full integration of your lighting environment, which can be achieved with a more
significant blur of your cubemap. Figure 17.1 illustrates the results for a cubemap, along
with its specular and diffuse version.
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With those environment maps, rendering lighting is straightforward. For the specular
lighting component, you use the reflection vector as a lookup into the specular blurred
environment map. To render diffuse lighting, the process is the same with the exception
that you will be using the surface normal instead of the reflection vector to look up into
the lighting texture.

Although this technique is simple and effective, the
amount of blurring required can be prohibitive, espe-
cially when dealing with diffuse lighting maps which
could potentially need hundreds of blurring passes to
achieve realistic lighting results. Because of this, we
need to take a look at better estimations for diffuse
lighting in our outdoor environment. But before we
consider a new approach, let’s take a look at how dif-
fuse lighting happens on the surface of an object for
a lighting environment.

Consider a specific point on a surface; you can
assume that this particular microfacet is a planar area
with a position in space and a constant surface nor-
mal. Because of this, the lighting that affects this par-
ticular point is defined by a simple hemisphere
centered on these microfacets. This has been illus-
trated in Figure 17.2.
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Figure 17.1  How a blurred cubemap can be used to represent specular and diffuse lighting.

Figure 17.2  How a particular
microfacet of your object gets light
as the summation of the light coming
into the hemisphere and centered on
the surface normal at that point.
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If you were to consider lighting from an environment at this point, the lighting could be
summarized by the integration of the lighting coming at this microfacet from every direc-
tion within the hemisphere, as shown in Figure 17.2. The approximation done in our
blurred cubemap was to assume that every point within the cubemap is the integration of
all lights within the hemisphere defined by the lookup direction within the environment
map. Although the blurring process does not give the same result as a real integration, it
does factor in the lighting contribution from neighboring pixels.

Hemisphere Lighting Model
When dealing with an outdoor environment,
you can simplify the process even more
because the most important components of
the lighting are the sky and ground reflection
colors. Going with this assumption, the process
of finding out the total lighting for a particular
microfacet of your object becomes a matter of
determining the appropriate blend of both the
sky and ground colors. This process is illus-
trated in Figure 17.3. Note that this approach
can work well for any circumstance when
lighting can be simplified by the representation
of two sources of light, one coming from the
ground and the other from above, and is not
restricted to only outdoor scenes, although it is
the most obvious example.

To achieve the appropriate blend, you need to
determine the proportion of the microfacet
hemisphere that corresponds to the sky and ground portions. Without getting into the
mathematical details, such integration is simply a matter of interpolating the sky and
ground color in relationship to the dot product of surface normal and a vector pointing
towards the sky. Doing so yields the following vertex shader code:

blendFactor = (dot(inNormal, float3(0,-1,0)) + 1.0)/2.0;

To develop a shader using this technique, you need a one-pass effect that renders an
object, taking in both the position and the normals for the object vertices. In addition to
the standard components, you need two extra variables to store the color of the ground
and sky. With this, your vertex shader simply needs to take in the vertex normal, compute
the blending factor, and use the lerp function to blend both colors. The following is the
resulting vertex shader:
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Figure 17.3  Determining lighting by using
two hemispheres, which represent the sky
and reflected ground colors.
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float4x4 view_proj_matrix;
float4 sky_color;
float4 ground_color;
struct VS_OUTPUT
{

float4 Pos:    POSITION;
float4 Diff:   COLOR;
float4 Tex:    TEXCOORD;

};

VS_OUTPUT vs_main(
float4 inPosition: POSITION,
float4 inNormal:   NORMAL,
float4 inTex:      TEXCOORD )

{
VS_OUTPUT Out; 

// Transform the position and output the texture coordinate
Out.Pos = mul( view_proj_matrix, inPosition);
Out.Tex = inTex;

// Determine the sky/ground factor
float factor = (dot(inNormal, float3(0,-1,0)) + 1.0)/2.0;

// Determine final lighting color
Out.Diff = lerp(sky_color,ground_color,factor);
Out.Diff.a = 1.0;

return Out;
}

The pixel shader simply needs to take in the determined lighting color and modulate this
interpolated value with the texture color of your object, yielding the following pixel
shader code:

sampler color_map;
float4 ps_main(

float4   inDiff: COLOR,      
float4   inTex:  TEXCOORD ) : COLOR

{
// Return the hemisphere color modulated
// with the color of the base texture
return inDiff * tex2D(color_map, inTex);

}
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Keep in mind that this particular shader does its oper-
ations on a per-vertex basis but can easily be adapted
to do the same in a per-pixel manner. Compiling and
running your new shader should give results similar to
the one shown in Figure 17.4. The final version of the
shader is included on the companion CD-ROM as
shader_1.rfx.

Why is this technique so awesome? There are a few 
reasons worth mentioning; the first is the quality of
the rendering results versus its ease of implementa-
tion. It is essentially a great, low-cost way of represent-
ing ambient lighting.

Another interesting point of this approach is that you
can use it to represent self-occlusion, or self-shadowing.
If you determine a self-shadowing factor for each vertex, you can use this value to atten-
uate the lighting coming in from the ambient hemisphere lighting. You may not think
much of self-shadowing, but when dealing with convex meshes, it is a reality that nooks
within your object are less exposed and will get less lighting, thus creating shadows within
your object. Being able to add such details to your rendering can make your graphics
much richer because you will learn over the next few paragraphs.

To do such self-shadowing, you need to determine the occlusion factor for each vertex on
your mesh. This is generally done by casting multiple rays from the vertex along its light-
ing hemisphere. Based on the ray’s intersection with
the surrounding geometry, you can build an occlu-
sion ratio, which can be used to scale down the
lighting on this particular vertex.

The whole process is illustrated in Figure 17.5,
along with a sample of a mesh rendered with and
without a self-occlusion term. Take note that the
self-shadowing value can easily be stored as part of
the alpha channel of the vertex color for your mesh.
I will not explain exactly how to determine the
shadowing factors because that is outside the scope
of this book, but you do need to remember that
such a technique only works well for a solid mesh,
which does not animate or deform over time.
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Figure 17.4  Rendering result for
the hemisphere shader.

Figure 17.5  Occlusion determination
by ray-tracing and sample of a mesh
with and without an occlusion factor.
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Polynomial Texture Maps
When doing lighting in previous chapters, you saw how important bumpmaps can be in
increasing the amount of detail perceived on your object. As you know, this detail does not
exist for real on your mesh, but you manage to fool the human eye by taking advantage of
those pixel-level details when performing lighting on your objects.

Even so, bumpmapping assumes that your object is of a constant texture and only repre-
sents the variations of elevation on the microstructure of the object through the normal
map itself. Because of this, bumpmapping cannot be used to represent such things as
varying object texture or self-shadowing.

Combining BRDF and Bumpmapping
In this section, I will introduce a new texture mapping technique called polynomial 
texture maps. They are a new form of texture representation that enables you not only to
consider micro-details, such as the elevations on a surface, but also to take into account
self-shadowing and some BRFD-like properties of your object’s material. Before you can
write a polynomial texture map, or PTM shader, let’s look at how this all works.

Lighting for a particular point on a surface
comes from the combination of all the
incoming light to the hemisphere of this
microfacet on the surface of the object. By
taking an object made of the material you
want to reproduce, you could set up a rig
that can take an image of your object with
different lighting angles. This is illustrated
in Figure 17.6. Because you want to repro-
duce diffuse lighting only, the position of
the viewer, or camera, can remain constant,
and you can set up your rig to only capture
lighting from different angles with a con-
stant camera position.

The result of this experiment is a set of
images of your surface, lit from various
angles. This in itself may seem of little use
without a way of representing or compress-
ing this information into a more useful
form. Taking the lighting for a particular
light on the hemisphere, you can simplify
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Figure 17.6  How you can set up a rig to
capture lighting properties of an object for
various lighting angles and a fixed camera.
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this vector by projecting it on the plane of the microfacet. This gives you a U and V vec-
tor along the plane of the surface, corresponding to the tangent and binormal vectors.
This enables you to represent a full vector with only two components, which will come in
handy later. This has been illustrated in Figure 17.7.

n o t e

You will need to keep in mind that building such a rig is probably impractical for most uses but
serves to show how such values can be determined. At the time of this writing, there are no tools
that can be used to generate polynomial textures. However, as use of this technique grows more
widespread, such tools are bound to start showing up.

At this point, you have a set of lighting tex-
tures and two variables to represent the
direction of the lighting. You need to find a
way to combine those two in a simple but
meaningful way. The inventors of polyno-
mial textures at Hewlett-Packard decided
to take a second order polynomial equa-
tion to represent the textures so that the U
and V vector components can be used to
re-create proper lighting. The equation is
in Figure 17.8.

This leaves you with six coefficients, which
can be determined by passing a set of light-
ing values through a curve-matching algo-
rithm. By applying this curve-matching to
the set of lighting images you determined
earlier, you can determine a set of coeffi-
cients per-pixel. Those coefficients enable
you to approximate the lighting in rela-
tionship to the lighting angle for each of
the pixels in your texture map.

Because some materials have varying lighting interactions based on the surface color, you
need to determine a set of coefficients for each of the color components, which would
cause PTMs to require 18 coefficients, one set of six for each color component. But for
general use, and because the eye is more sensitive to slight variation in light intensity than
to color, you can average the coefficients so that only a single polynomial is needed.

With six coefficients to represent, you can use two textures to store this side information.
Samples are provided with RenderMonkey and are named tablet_a012.tga and
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Figure 17.7  How the lighting direction for a
microfacet can be represented by two compo-
nents projected onto the plane of the microfacet.

Figure 17.8  Polynomial equation used for
polynomial texture mapping.
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tablet_a345.tga. Also keep in mind that because the polynomial coefficients can be signed,
proper scale and bias will need to be applied to the texture.

Building the Shader
Developing a shader for polynomial texturing is straightforward. Because the polynomial
information is stored in a texture, the bulk of the work needs to be done on the pixel
shader. The only thing the vertex shader needs to do is to transform the lighting vector
into tangent space so that we may discover a per-pixel U and V coefficient for you to eval-
uate the polynomial.

To accomplish this, you need to transform the light vector into tangent space. This means
you need to set up your stream mapping so that it returns the normal, tangent, and bi-
normal for the vertex. The following is the resulting vertex shader code:

float4x4 view_proj_matrix;
float4x4 inv_view_matrix;
float4 light;
struct VS_OUTPUT
{

float4 Pos:    POSITION;
float4 Tex:    TEXCOORD0;
float3 Light:  TEXCOORD1;

};

VS_OUTPUT vs_main(
float4 inPosition: POSITION,
float4 inNormal:   NORMAL,
float4 inTex:      TEXCOORD,
float4 inTangent:  TANGENT,
float4 inBinormal: BINORMAL )

{
VS_OUTPUT Out; 

// Transform the vertex and output its texture coordinate
Out.Pos = mul(view_proj_matrix, inPosition);
Out.Tex = inTex;

// Determine the light vector
float3 lightVect = normalize(mul(inv_view_matrix, light) - Out.Pos);

// Transform the light into tangent space
Out.Light.x = dot(lightVect, inTangent.xyz);
Out.Light.y = dot(lightVect, inBinormal.xyz);
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Out.Light.z = dot(lightVect, inNormal.xyz);

return Out;
}

The pixel shader for PTM is significantly more complex. Access to the polynomial textures
is simple, but you need to prepare the lighting vector to be useful. The first step is to nor-
malize the lighting vector and extract the U and V components. Because our vector is in
tangent space, we are blessed that the U and V components simply correspond to the X
and Y components of the vector. However, you need to renormalize them appropriately
by scaling the resulting values by the inverse of the Z component, ensuring that the U/V
vector has a length of 1. The following code does just this:

inLight.xy = normalize(inLight.xy);
inLight.xy *= (1.0 - inLight.z);

With this, you only need to evaluate the polynomial using the right combinations of U
and V. Remember that the PTM values must be biased and scaled because they are signed.
The following is how you can perform this:

lu2_lv2_lulv = inLight.xyx * inLight.xyy;
col = dot(lu2_lv2_lulv, a012) + 

dot(float3(inLight.xy,1), a345);

At this point, col contains the color intensity for the particular pixel. Determining the
final color is simply a matter of reading in the surface texture and modulating it with the
polynomial texture map lighting intensity you just determined, yielding the following
pixel shader code:

float mode;
sampler color_map;
sampler Poly1;
sampler Poly2;
float4 ps_main( 

float4 inTex: TEXCOORD0, 
float3 inLight:TEXCOORD1 ) : COLOR

{
float3 lu2_lv2_lulv;
float4 col;
float3 a012;
float3 a345;

// Normalize light direction
inLight = normalize(inLight);

// z-extrapolation
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inLight.xy = normalize(inLight.xy);
inLight.xy *= (1.0 - inLight.z);
inLight.z = 1.0;

// Prepare higher-order terms
lu2_lv2_lulv = inLight.xyx * inLight.xyy;

// read terms and bias
a012 = tex2D(Poly1,inTex) * 2.0 - 1.0;
a345 = tex2D(Poly2,inTex) * 2.0 - 1.0;
a345.z += 1.0;

// Evaluate polynomial
col = dot(lu2_lv2_lulv, a012) + dot(inLight, a345);

// Multiply by rgb factor
return col * tex2D(color_map, inTex);

}

Compiling and running your new shader
should give results similar to the one
shown in Figure 17.9. The final version of
the shader is included on the companion
CD-ROM as shader_2.rfx.

As you can see in Figure 17.9, the image
from different angles takes into account
not only the bumpiness but also more
subtle details, such as self-shadowing.
More work is involved, and double the
texture is needed to represent the PTM
coefficients, but with increasing hardware
speeds and texture bandwidth, it is likely
that PTMs will be an even more com-
monly used technique in the future and
will likely replace bumpmapping.

Spherical Harmonics
Earlier when I was talking about hemisphere lighting, I presented it as a primitive way of
approximating lighting for an environment. In this section, I will present another tech-
nique called spherical harmonics. These allow you to represent the lighting from a single
environment as seen from a single point.
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Figure 17.9  Rendering result for the polynomial
texture map shader for various lighting directions.
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The Basic Idea
The idea behind spherical harmonics is relatively simple. Instead of thinking of lighting
in terms of color, think of it in terms of frequency. A simple frequency representation on
its own does not give us much to play with. Instead of going with this approach, what if
we take all the light coming in to this point from all directions and wrap it around a
sphere? With this representation, you can take the frequency spectrum of not the color but
the variation of lighting around the sphere. Think of it as the spatial spectrum.

Because you only use your lighting as a source of ambient diffuse lighting, one major sim-
plification can be done. Diffuse lighting means smooth transitions of the colors and no
sharp discontinuities. In the spatial frequency domain, this translates into a spectrum that
only requires the lower frequency components.

In simpler words, by representing the diffuse lighting of an environment seen from a
point in space by a few low frequency harmonics, you can get a very good approximation.
Experimentation has shown that taking 9 to 16 harmonics at low frequency is enough to
give good results. Figure 17.10 shows the spherical harmonics for six coefficients.
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Figure 17.10  Visual representation of the first nine spherical harmonics.
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Evaluating a spherical harmonic can be somewhat
complex and involves the use of complex numbers.
However, the equations can be boiled down to the
reconstruction function shown in Figure 17.11.

Looking at this equation, notice the double sum
involved. This can be approximated by the combina-
tion of a matrix operation and a dot product. Because
you are lighting from a single direction represented by the normal, the y value is simply the
vector represented by the normal. The lighting operation becomes a matter of projecting the
spherical harmonic coefficients represented in matrix form to the lighting normal based on
the vertex normal.

Keep in mind that the following operation applies to a single color component. You will
need to repeat the same operation for each of the red, green, and blue color components;
this means you need three coefficient matrices in the end. Now, keep in mind that my
explanation of spherical harmonics is significantly simplified. The math involved is much
more complex, but for the purpose of this book, I just want to stick to the basic imple-
mentation of such a technique. But before I can show you how to implement such a shader,
you need to know a little about how the spherical harmonic coefficients are determined.

Evaluating the spherical harmonic coefficient matrix in the first place is a more daunting
task. In essence, you need to integrate the product of the orientation, along with its color
value along the whole sphere, to determine the coefficient. You need to do the same for
each of your harmonic coefficients. If you are acquainted with calculus, you know now
why determining spherical harmonic coefficients in real-time can prove to be challenging.

For this chapter, we will not create our own coefficients, but will use a predetermined set
from an environment map of a cathedral. The coefficients have been extracted from this
environment map and are presented in matrix form in Figure 17.12. Using this set of coef-
ficients on an object yields lighting that would simulate the lighting of an object within
this environment.
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Figure 17.11  Equation used to
reconstruct lighting from a set of
spherical harmonics.

Figure 17.12  Spherical harmonic coefficients for our shader.
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Lighting with Spherical Harmonics
The workspace for implementing a spherical harmonic shader is simple and requires a
basic pass along with a texture for your model. For this shader, I recommend using the
teapot model and the fieldstone.tga as texture. For this shader, you also need to set your
stream mapping to export the vertex normal; it will be useful for lighting. And before I
forget, you also need the proper variables within your environment to contain the spher-
ical harmonic matrices.

In this particular shader, we will accomplish the lighting on a per-vertex basis. In the exer-
cise at the end of this chapter, you will be asked to do the same task on a per-pixel basis.

The first step in rendering your object is simply to project the vertex position and output
it along with the texture coordinate, as you have done for most shaders in this book. Fol-
lowing this step, you need to prepare yourself for lighting. Because you want your light to
stay static and your object to rotate in this light, you need to consider your light as being
in view space. To do this, you need to transform your vertex normal into view space. This
can be done with the following code:

normal = mul(view_matrix, normal);

Then all you need to do is take the transformed normal and apply the spherical harmon-
ics to it. This is done by rotating the normal into the space of the harmonic for the proper
color component and then projecting it back onto the normal with the use of a dot prod-
uct. The following shows how this can be done in HLSL:

Color.r = dot(mul(r_matrix, normal), normal);

Putting all the components together yields the following vertex shader code:

float4x4 view_proj_matrix;
float4x4 view_matrix;
float4x4 r_matrix;
float4x4 g_matrix;
float4x4 b_matrix;
struct VS_OUTPUT
{

float4 Pos:    POSITION;
float4 Diff:   COLOR;
float4 Tex:    TEXCOORD;

};
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VS_OUTPUT vs_main(
float4 inPosition: POSITION,
float4 inNormal:   NORMAL,
float4 inTex:      TEXCOORD )

{
VS_OUTPUT Out; 

// Transform the position and output the texture coordinate
Out.Pos = mul( view_proj_matrix, inPosition);
Out.Tex = inTex;

// Rotate normal into view space since the lighting information
// is in that space
float4 normal = float4(inNormal.x, inNormal.y, inNormal.z, 0.0);
normal = mul(view_matrix, normal);
normal.w = 1.0;

// Evaluate spherical harmonic
Out.Diff.r = dot(mul(r_matrix, normal), normal);
Out.Diff.g = dot(mul(g_matrix, normal), normal);
Out.Diff.b = dot(mul(b_matrix, normal), normal);
Out.Diff.a = 1.0;

return Out;
}

The pixel shader required for this effect simply needs to take the incoming spherical har-
monics lighting color and modulate it by the texture color, giving the following code:

sampler color_map;
float4 ps_main(

float4   inDiff: COLOR,      
float4   inTex:  TEXCOORD ) : COLOR

{
// Return the spherical harmonic color modulated
// with the color of the base texture
return inDiff * tex2D(color_map, inTex);

}
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Compiling and running your new shader should
give results similar to the one shown in Figure
17.13. The final version of the shader is included on
the companion CD-ROM as shader_3.rfx.

As you can see from the above shader, you can com-
pute very interesting lighting at a relatively low cost.
One major drawback with spherical harmonics is
that the computation process for the coefficients is
relatively expensive and is most likely too prohibi-
tive to be done in real-time. On the plus side, spher-
ical harmonics can be interpolated linearly, which
means that you can precompute several sets of coef-
ficients and interpolate from one to another.

If you want to push things even further, there are
additional uses for spherical harmonics. For exam-
ple, they can be used to represent self-shadowing coefficients, as well as self-reflections on
a mesh. Spherical harmonics are an interesting approach to lighting and with the increase
of rendering power will most likely become a more common approach in the future.

It’s Your Turn!
The following exercise will let you explore the topic of advanced lighting on your own.
The solution to this exercise can be found in Appendix D.

Exercise 1: PER-PIXEL SPHERICAL HARMONICS
For this exercise, you are asked to take the spherical harmonics shader developed earlier
in this chapter and expand it to do its operations per-pixel. To do so, you simply need to
move some of the variables from the vertex shader to the pixel shader and compute your
lighting for each pixel.

What’s Next?
In previous chapters, I discussed the topic of lighting by covering the basic aspects and
commonly used techniques, such as diffuse and specular lighting and bumpmapping.
This chapter was dedicated to the exploration of alternative techniques that can be applied
to your renderings. Considering the rate at which the rendering hardware progresses, it is
safe to assume that techniques similar to the ones explained in this chapter will soon
become more prevalent.
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Figure 17.13  Rendering result for
the spherical harmonic shader.
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The first way to approach lighting is to derive your own approximation that takes into
account your current rendering context. The example presented in this chapter was hemi-
sphere lighting, which works well for an outdoor environment where the two prevalent
sources of light are the sky and the ground. By taking such an approach, you can make
your ambient lighting for outdoor scenes much more realistic at a relatively low cost. In
addition, this technique can be expanded to take into account local mesh phenomena
such as self-shadowing.

In the second part of this chapter, I introduced the concept of polynomial texture maps,
or PTMs, which serve as a sophisticated replacement for traditional bumpmapping when
dealing with diffuse lighting. The advantage of PTMs is that, by taking lighting samples
for different angles, you can formulate the lighting of each pixel in terms of a polynomial
equation, which can then be evaluated at run-time, allowing more surface detail to be pre-
sent, such as BRDF characteristics and self-shadowing.

Finally, I discussed the more complex topic of spherical harmonics. By taking advantage
of the low frequency characteristics of diffuse lighting, you can represent environmental
lighting for a single point in space through a small set of frequency harmonics wrapped
around a sphere. Because of their nature, spherical harmonics can be evaluated on current
graphics hardware through the use of a simple matrix operation and can even be per-
formed on a per-pixel basis. The major advantage of spherical harmonics is that they can
be used not only to represent lighting from a scene, but per-vertex to store surface details
such as intra-reflections and self-shadowing.

One thing you are bound to have noticed by now is the importance of lighting when ren-
dering geometry. So far, I have talked about the lights themselves and how they interact
with objects and materials. I have left out an important side effect of lighting that can have
significant contributions to the look of a scene. The next chapter covers the topic of shad-
ows and how they can be reproduced in your 3D environment.
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309

Shadowing

chapter 18

Lighting is one of the most important visual cues to make a scene more realistic and
appealing. No matter how high quality your texture or your meshes are, if you ren-
der them with a constant lighting value, your scene does not look natural. Light-

ing is the reason you can see the world in the first place, and the more you consider the
little subtleties of lighting, the more realistic your scene will look.

I have focused a lot on lighting itself throughout this book, but I have yet to discuss 
an important byproduct of lighting, which can be even more important than lighting
itself: shadows. All the lighting approaches so far in this book consider only the angle, dis-
tance, and color of the light but fail to consider whether the light can reach an object in
the first place. The reality is that lights are occluded by some objects, thus producing shad-
ows within your scene. However, without the use of expensive, non-real–time techniques,
such as ray tracing, it is almost impossible to determine accurate shadowing while ren-
dering your initial lighting.

In addition to making renderings more realistic, the use of shadows can be of great impor-
tance in some contexts. Imagine a video game where you have to jump from platform to
platform. Depending on the camera angle, it may be hard to discern where you are when
jumping in the air and to know whether you will reach the next platform. However, if you
add a shadow to your character, you add an important visual cue, which can give the user
a good idea where they are when in the air.

Throughout this chapter, I will introduce the basic concepts of shadowing so you can have
a good idea of how the phenomenon happens and some of the legacy techniques used to
represent shadows. Following this, I will introduce the two techniques most commonly
used today: shadow mapping and shadow volumes. For now, let’s get started with an
introduction to the basics of shadowing.
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The Basics of Shadows
Shadows are a byproduct of lighting and, under some circumstances, can be an even more
important visual cue than the lighting itself. In this section, I will show you how shadows
happen so you can have a better understanding of the techniques used to re-create them.

Now, you may have heard before that there is no such thing as warm and cold, just warmth
and a lack of warmth. The fact is that people tend to see things as black and white, when
in reality it’s just different levels of gray. Lack of heat energy causes something to feel cold;
add some heat, and it will get warmer. The same principle applies to shadows. There are
no such things as shadows; they only come from a lack of lighting. In nature, when some
object blocks a source of light, a shadow is left behind because the light-receiving object
does not get any lighting because it is occluded. Figure 18.1 shows this phenomenon.

In Figure 18.1, you may have noticed two parts to the shadow. The umbra is the portion
of the shadow that is fully covered, and the penumbra is the portion that is partially in
shadow. The umbra results from there being no such thing as a real point light. Lights are
emitted not from a single position but from an area, which causes the regions on the
boundary where the light is not fully occluded to be partially in shadow. Figure 18.2 shows
you how a penumbra happens for a non-point light.

When rendering a scene with lighting, you and the hardware have no knowledge of
whether a source of light is occluded by another object. Because of this, shadowing does
not happen naturally and must be artificially re-created. Because you can’t know about
light occlusions, you cannot do shadowing as part of your regular lighting process and
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Figure 18.1  How shadows happen when an object blocks a source
of light from another object.
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must render shadows as a secondary process. Although it would be nice for them to be
part of the lighting process itself, occlusions cannot be easily determined at run-time and
are generally kept for more advanced rendering techniques, such as ray tracing.

With this in mind, this chapter will show you techniques that you can use to add shadows
as part of your scene so that you can add back the realism that was lost when you did your
lighting. Before I talk about these techniques, let’s brush up on the more basic techniques
that were used in the past.

The first and simplest technique is to render a simple circular shadow on the receiving
geometry. Such a shadow is done as a simple polygonal circle or as a projective texture.
Although it does not capture the shape of the shadow casting object, it can at least give the
user a rough visual cue for the shadow. Remember that platform-jumping game I men-
tioned earlier? Such a shadow has often been used in this situation so the user would get
a rough idea of where he is located when jumping.

The second commonly used technique in the past is known as geometry flattening. With
this technique, you take your object geometry and set up a transformation matrix, which
takes the geometry from the point of view of the light and projects it flat onto the plane
of the receiving shadow geometry. The process essentially flattens, or squashes, the mesh
into a flat surface, which is rendered as geometry on top of the shadow receiver.

The major problem with both of those techniques is that they create a shadow by creating
a piece of geometry and rendering it on top of the receiver. If the receiver is a plane such
as a floor, all goes well. However, if the receiving geometry has a shape that is non-planar,
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Figure 18.2  Illustration of how a penumbra happens for non-ideal
sources of light.

TEAM LinG - Live, Informative, Non-cost and Genuine !



your shadow will not follow the shape of the receiving geometry, and in some cases, it may
be even more difficult to determine for which plane the shadow must be created.

Because the old-style techniques work well for flat receiving surfaces, they worked well
back when the geometry for the game worlds was simple enough. But with today’s com-
plex environments, these techniques just can’t cut it; they lead to serious visual problems.
Because of this, new techniques needed to be developed to take advantage of the latest
hardware and to ensure that the shadows themselves can conform to any kind of receiver
within your scene.

In the next two sections, I will talk about two of the most commonly used shadowing
techniques today. In the first section, I will discuss shadow mapping, which takes advan-
tage of render targets to determine accurate per-pixel shadows on your geometry. In the
second section, I will discuss shadow volumes, which take advantage of some properties
of shadows and hardware support of stencil buffers.

Shadow Mapping
The major flaw with the geometry flattening technique was that because it was rendered
as geometry, it would not interface well with the shadow receiver because it is not neces-
sarily a flat surface. The question is, how can you take the basic idea of this technique and
adapt it so that it works for any type of receiver?

For this to happen, you have to consider an aspect of shadowing. If you take a look at your
scene from the point of view of the light, shadowed regions correspond to the portions of
the scene that are behind the object occluding the light. In rendering terms, any object
whose depth is greater than the occluder’s from the point of view of the light will be in
shadow.

n o t e

When dealing with shadows in your scene, you must take into consideration the complexity of the
scene. The interaction of a light with its environment can cause the creation of many shadows,
which can have a negative performance impact on your application. Because of this, you need to
ensure that you properly determine which objects in your scene should cast shadows. This helps to
maximize your performance and ensures that you get the most out of your shadows.

The key point with shadow mapping is to take advantage of this fact. If you know the depth
of the occluders from the point of view of the light, you can potentially use that informa-
tion to determine whether any pixels of your receiving objects are within the shadow. To
do this, when rendering objects in your scene, you can use some math to determine the
depth of a particular pixel from the point of view of the light. By comparing this value to
the pre-computed depth of the occluders, you can discover whether a specific pixel is shad-
owed from the source of light. The whole process has been illustrated in Figure 18.3.
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To build a shader using this technique, you first need to discover the depth of the occluder
from the point of view of the light. To do so, you need to define a camera from the point
of view of the light and render your object using this transformation matrix. Instead of
storing the color of the object, you will use the shader to store the depth of the pixel from
the light’s viewpoint. For this particular shader, I have elected to use a floating-point ren-
der target to store the depth values, meaning that it may not work on every hardware plat-
form, but it was convenient for simplicity. If you want, you could use a fixed-point texture
combined with the depth encoding technique used in previous chapters.

For the purpose of this shader and to better illustrate the shadow, I have opted for an ani-
mating source of light. The light is set up to rotate in a circle, based on time, slightly above
the shadow casting object. The code used to animate the position of the light is as follows:

lightPos.x = cos(1.321 * time_0_X);
lightPos.z = sin(0.923 * time_0_X);
lightPos.xz = 100 * normalize(lightPos.xz);
lightPos.y = 100;

The second step to this shader is to determine the view matrix from the point of view of
the light. Because the light’s position is known and we are assuming that the light is look-
ing at the origin, the matrix can be determined by evaluating the x, y and z-axis, which the
light is pointing at. This can be done with the following code:

float3 dirZ = -normalize(lightPos);
float3 up = float3(0,0,1);
float3 dirX = cross(up, dirZ);
float3 dirY = cross(dirZ, dirX);
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Figure 18.3  Using shadow mapping to determine if a pixel is
shadowed by a particular occluder.
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With this information, you can transform your object’s position into the light-space and
project it so you can render it to your depth render target. Putting all the pieces together
yields the following vertex shader code:

float time_0_X;
float4x4 proj_matrix;
float4x4 view_proj_matrix;
float distanceScale;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float3 lightVec: TEXCOORD0;

};

VS_OUTPUT vs_main(float4 inPos: POSITION)
{

VS_OUTPUT Out;

// Animate the light position.
float3 lightPos;
lightPos.x = cos(1.321 * time_0_X);
lightPos.z = sin(0.923 * time_0_X);
lightPos.xz = 100 * normalize(lightPos.xz);
lightPos.y = 100;

// Create view vectors for the light, looking at (0,0,0)
float3 dirZ = -normalize(lightPos);
float3 up = float3(0,0,1);
float3 dirX = cross(up, dirZ);
float3 dirY = cross(dirZ, dirX);

// Transform into light’s view space.
float4 pos;
inPos.xyz -= lightPos;
pos.x = dot(dirX, inPos);
pos.y = dot(dirY, inPos);
pos.z = dot(dirZ, inPos);
pos.w = 1;

// Project the object into the light’s view
Out.Pos = mul(proj_matrix, pos);
Out.lightVec = distanceScale * inPos;

return Out;
}
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You may have noticed that the output variable lightVec from the vertex shader is simply
the vertex position in light-space. Because we want to be precise, we need to find out the
exact radial distance from the light’s viewpoint. To do so, we use the interpolated light-
space vertex position and determine its length using the length function. This gives you
the following pixel shader code:

float4 ps_main(float3 lightVec: TEXCOORD0) : COLOR
{

// Output radial distance
return length(lightVec);

}

Keep in mind that the preceding pixel shader assumes that you are rendering your depth
to a floating-point render target. If you were to render it to a fixed-point texture, you will
need to adapt the pixel shader to appropriately encode the depth into a set of red, green,
and blue components.

Now that you have your occluder depth encoded, how can you take advantage of it to ren-
der accurate shadows? When rendering your shadow receiver, you need to determine two
things. First of all, you need to find out the light-space position of your vertex so you can
get the depth value from the occluder depth texture. To do this, you need to find out the
light-space vertex position and project this value; the code for this is the same as the one
used when building your depth map. However, you need to determine the texture coordi-
nates for your depth texture lookup; this can be calculated with the following code:

// Evaluate the light space coordinates for the render target
// where sPos is the vertex position transformed in light-space
// Note that the Z component is offset by 10 as a bias to prevent
// unwanted self-shadowing
sPos.z += 10;
Out.shadowCrd.x = 0.5 * (sPos.z + sPos.x);
Out.shadowCrd.y = 0.5 * (sPos.z - sPos.y);
Out.shadowCrd.z = 0;
Out.shadowCrd.w = sPos.z;

The second thing you need is the depth of this pixel in light-space. Because you have
already determined the light-space position for the vertex, you can use the same process
used for the depth map pass and send the light-space vector to the pixel shader for it to
determine its length with the length function. Also, because you are lighting the object,
you need to pass the view vector to the pixel shader so that it can discover the proper light-
ing and apply shadows where needed. Putting all the pieces together yields the following
vertex shader code:

float distanceScale;
float4 lightPos;
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float4 view_position;
float4x4 view_proj_matrix;
float4x4 proj_matrix;
float time_0_X;
struct VS_OUTPUT
{

float4 Pos:       POSITION;
float3 normal:    TEXCOORD0;
float3 lightVec : TEXCOORD1;
float3 viewVec:   TEXCOORD2;
float4 shadowCrd: TEXCOORD3;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float3 inNormal: NORMAL)

{
VS_OUTPUT Out;

// Animate the light position.
float3 lightPos;
lightPos.x = cos(1.321 * time_0_X);
lightPos.z = sin(0.923 * time_0_X);
lightPos.xz = 100 * normalize(lightPos.xz);
lightPos.y = 100;

// Project the object’s position
Out.Pos = mul(view_proj_matrix, inPos);

// World-space lighting
// Note: distanceScale serves as a scaling factor to ensure
// that the depth stored in light-space is in the zero-to-one range.
// It should generally be set to 1 / FarZClip
Out.normal = inNormal;
Out.lightVec = distanceScale * (lightPos - inPos.xyz);
Out.viewVec = view_position - inPos.xyz;

// Create view vectors for the light, looking at (0,0,0)
float3 dirZ = -normalize(lightPos);
float3 up = float3(0,0,1);
float3 dirX = cross(up, dirZ);
float3 dirY = cross(dirZ, dirX);
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// Transform into light’s view space.
float4 pos;
inPos.xyz -= lightPos;
pos.x = dot(dirX, inPos);
pos.y = dot(dirY, inPos);
pos.z = dot(dirZ, inPos);
pos.w = 1;

// Project it into light space to determine she shadow
// map position
float4 sPos = mul(proj_matrix, pos);

// Use projective texturing to map the position of each fragment
// to its corresponding texel in the shadow map.
sPos.z += 10;
Out.shadowCrd.x = 0.5 * (sPos.z + sPos.x);
Out.shadowCrd.y = 0.5 * (sPos.z - sPos.y);
Out.shadowCrd.z = 0;
Out.shadowCrd.w = sPos.z;

return Out;
}

The pixel shader for this pass does most of the hard work. First of all, it determines the
light-space depth by finding out the length of the light vector. This is the same code as
used for the previous pass. In addition, the shader determines lighting for your object.
This is done as a simple specular and diffuse lighting using the following code:

diffuse = saturate(dot(lightVec, inNormal));
specular = pow(saturate(dot(

reflect(-normalize(viewVec), inNormal), lightVec)),16);

The tough part of this shader is determining whether this pixel is in shadow or not. To do
so, you simply sample the shadow map and compare it to the pixel depth. The following
code does just that:

float shadowMap = tex2Dproj(ShadowMap, shadowCrd);
float shadow = (depth < shadowMap + shadowBias);

// Compute the final color as the lighting being canceled out by the
// shadow if any. The Ka, Kd and Ks coefs. Control the ambient, diffuse
// and specular lighting contributions.
return Ka * modelColor +

(Kd * diffuse * modelColor + Ks * specular) * shadow;
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There are two things to note about this piece of code. The first one is the shadowBias vari-
able; because you do not want small imprecisions to cause the occluder to be shadowed
on its lit side, the ShadowBias ensures a small offset to the depth values to guarantee that
anything close to the occluder depth does not get shadowed.

The second item worth mentioning is the shadow variable. This value is set using a condi-
tional test, which means the variable contains either 0 or 1. The result is then used in the
final lighting equation to modulate with the lighting color so that the light is canceled out
for in-shadow regions. Putting all the pieces of the puzzle together gives you the follow-
ing pixel shader code:

float shadowBias;
float backProjectionCut;
float Ka;
float Kd;
float Ks;
float4 modelColor;
sampler ShadowMap;
sampler SpotLight;
float4 ps_main(

float3 inNormal:  TEXCOORD0,
float3 lightVec:  TEXCOORD1,
float3 viewVec:   TEXCOORD2,
float4 shadowCrd: TEXCOORD3) : COLOR

{
// Normalize the normal
inNormal = normalize(inNormal);

// Radial distance and normalize light vector
float depth = length(lightVec);
lightVec /= depth;

// Standard lighting
float diffuse = saturate(dot(lightVec, inNormal));
float specular = pow(saturate(

dot(reflect(-normalize(viewVec), inNormal), lightVec)),
16);

// The depth of the fragment closest to the light
float shadowMap = tex2Dproj(ShadowMap, shadowCrd);

// A spot image of the spotlight
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float spotLight = tex2Dproj(SpotLight, shadowCrd);

// If the depth is larger than the stored depth, this fragment
// is not the closest to the light, that is we are in shadow.
// Otherwise, we’re lit. Add a bias to avoid precision issues.
float shadow = (depth < shadowMap + shadowBias);

// Cut back-projection, that is, make sure we don’t lit
// anything behind the light.
shadow *= (shadowCrd.w > backProjectionCut);

// Modulate with spotlight image
shadow *= spotLight;

// Shadow any light contribution except ambient
return Ka * modelColor +

(Kd * diffuse * modelColor + Ks * specular) * shadow;
}

This process can be applied to any receiver objects within your scene. For the purpose of
this shader, it has been applied both to the occluder and a floor object that has been put
within the scene. Keep in mind that you generally need to include the occluder object as
part of the receivers because the back side of the object will be in shadow, and you should
take into account self-shadowing.

Compiling and running your new shader
should give results similar to the one shown 
in Figure 18.4. The final version of the shader
has also been included on the companion CD-
ROM as shader_1.rfx.

I should mention a few more things regarding
the use of shadow mapping. The first one
involves hardware support. Some of the cur-
rent hardware has built-in hardware support
for shadow mapping and will take care of the
light-space depth test for you automatically.
However, at the time of this writing, support
is sparse, and there is not any standard as to
how it is expressed. Because of this, I have
opted for a software only version of the algo-
rithm because it can only be implemented on
any 2.0 compatible hardware.
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Figure 18.4  Rendering result for various
light positions of the shadow mapping shader.
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The second point I need to discuss is that shadow mapping leaves you with a hard shadow.
In fact, this algorithm leaves you with a sharp shadow edge without any penumbra. If you
remember our discussion earlier, most lights are not perfect point lights; you may want to
take that into account so that your shadows have soft edges.

Although there isn’t an exact implementation with shadow mapping to produce it, a
decent approximation can be implemented. If you sample your shadow map several times
at slight offsets, you can determine whether the shadow pixel you are rendering is on the
boundary of the shadow. The easiest way to accomplish this is to sample neighboring 
texels within the shadow map and weigh the fraction of in-shadow and out-of-shadow
pixels. I will not give you any code on how to do this; it will be your task to accomplish at
the end of this chapter.

Shadow mapping is definitely a dandy way of implementing shadows within your hard-
ware. However, it does suffer from some drawbacks. The most obvious one is the fact that
you will need to determine your occluders and receivers ahead of time. Also, this tech-
nique requires you to render receivers multiple times if you want to account for multiple
shadows.

A less obvious drawback is that the depth of your occluder is rendered to a texture.
Because of this, you generally need a high precision texture to have sufficient precision.
With the math involved, you will likely start getting rendering artifacts when the light and
the viewer’s position get perpendicular to each other. These artifacts are aliasing issues,
which can occur at certain angles when the shadow map is being sampled at a lower res-
olution. The following technique, shadow volumes, takes care of some of these drawbacks
by taking advantage of the stencil buffer and the volumetric properties of shadows.

Shadow Volumes
Although shadow mapping has some definitive advantages, its inconvenience can make it
impractical for some applications. Because of this, we need to find another technique that
can work well under most circumstances. That’s when shadow volumes come into play.

I need to warn you about one thing beforehand. Because of the nature of shadow volume,
they currently cannot be implemented under RenderMonkey. Because of this, I will dis-
cuss the technique and give pieces of code where appropriate, but no actual shader will be
developed.

Imagine a light and an occluder; a portion of the occluder will be lit, and the other part
will be in shadows. The fact that there are two regions on the object allows you to define
a boundary along the object where the in- and out-of-shadow portions happen. If you
project this outline away from the light, you define in 3D the region where any receiver
will be shadowed. This has been illustrated in Figure 18.5.
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Where things get tricky is to determining what the boundary is in the first place. Because
we are dealing with a mesh, it is generally most convenient to consider individual poly-
gons. By taking a look at every edge from which the mesh is constructed, you can discover
whether any edge is in-shadow, out-of-shadow, or part of the boundary. To determine
this, you need to look at each face that makes up the edge. Using the face normal, you can
discover whether a particular face is shadowed or not. If, for a particular edge, one face is
shadowed and the other isn’t, then this particular edge defines the boundary for the
shadow volume.

This brings up one important consideration in regards to the mesh of an occluder.
Because you want to determine whether each edge is part of the shadow boundary, this
will require your mesh to be n-manifold. What does this mean? In practical terms, it
means that the mesh itself needs to be closed and that each edge of your mesh belongs to
two, and only two, faces. If this condition isn’t met, determining a proper boundary for
the shadow volume likely will fail and lead to visual artifacts. This is because, for the vol-
ume shadow algorithm to work properly, the volume that is generated needs to be fully
closed; it needs a full boundary without any gaps.

Now that you have determined which set of edges belongs to the shadow boundary, the
issue becomes how you can take advantage of this. The boundary of the shadow, if pro-
jected away from the light, forms a 3D area where receivers are shadowed. Using the edge
information you generated previously, you can use the vertices from those edges to create
the volume geometry.
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Figure 18.5  How the boundary between in- and
out-of-shadow for an occluder defines a volume for
which every receiver is shadowed.
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At this point, you have determined the shadow boundary on your occluder and figured
out how to generate a volume from it. It’s now time to use this geometry to render your
shadow. Because of the properties of the shadow volume, you can render it from any 3D
position and get your shadow. The trick to getting a shadow out of your volume is to take
advantage of both the z-buffer and the stencil buffer that is offered by the rendering hard-
ware. The approach to this is very similar to the one taken earlier to render volumetric fog.

n o t e

The stencil buffer is a hardware feature which allows you to have a few extra bits of information
with every pixel in your rendered scene. These bits can be manipulated at your discretion and can
even be used to mask out certain potions of the screen.

As shown in Figure 18.6, if you render your shadow volume using the stencil buffer, you
can determine the in-shadow regions. By adding to the stencil buffer for every back-
facing shadow volume and subtracting for every front-facing face, you normally end up
with a zero value in your stencil buffer because the shadow volume is closed. Nothing too
interesting yet, but things get more intriguing when you throw the z-buffer into the mix.

If you initially render your scene before rendering the shadow volume into the stencil, the
buffer is already populated with the depth values of all your geometry. By testing your
shadow volume against the z-buffer, regions of your shadow volume intersecting geome-
try will leave nonzero values within the stencil buffer.

After you render all your shadow volumes, you can simply do a full-screen pass of a dark-
ening color, which checks for nonzero values. This leaves darkening values where receivers
intersect with the shadow volumes.
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Figure 18.6  How a shadow volume can be used to determine
the shadowed regions.
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This is a simple as it gets. The whole process is pretty simple, but there are a few caveats
that you will need to keep in mind. The first problem arises when the shadow volume
intersects the front clipping plane of the camera. This clipping plane prevents the whole
volume from being displayed, leading to an incorrect stencil buffer count, which in turn
leads to wrong shadowing.

The last major problem is that the shadow volume needs to be determined on the CPU,
one of the main reasons why we could not create a shader under RenderMonkey. On the
bright side, with a little cleverness, there is a way to avoid building the silhouette on the
CPU, which is the topic of this next section.

Taking Advantage of the Hardware
Extracting the shadow volume silhouette may not seem to be a big deal, but if you want
to render multiple shadows, you may start to notice that the process is stealing away
important clock cycles from other, possibly important tasks. If you are writing a game,
wouldn’t you rather use the CPU to do things such as AI or physics? Because of this, you
may wonder if there is a way to do this whole process on the graphics processor instead of
the main processor. Well, you are in luck!

The process itself isn’t totally free and you will need to preprocess your meshes, but you
can, in fact, do the silhouette extraction. In essence, with shadow volumes, you want to
determine the silhouette of where the in-shadow and out-of-shadow regions meet. If you
could push the part of your mesh that is shadowed, and project it away from the light, you
would have a fully closed volume as long as you have some way of ensuring that there is
geometry between the two parts at the silhouette. Figure 18.7 illustrates this.
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Figure 18.7  How projecting the shadowed part of a mesh away
from the light can create a fully closed shadow volume.
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For this to happen, there are a few things which need to be taken care of. The first aspect
is determining within the vertex shader which part of the mesh is shadowed. This may
seem easy, but it is something that needs to be determined for each face, even though you
are writing a vertex shader and have no knowledge of the mesh topology.

The solution to this problem is to separate each face as a separate polygon, with its own
set of vertices. This enables you not only to avoid sharing issues which may occur, but also
to store the triangle normal as part of the vertices so you can perform the silhouette cal-
culations within your vertex shader.

This leaves a second issue. Although you may be able to detect which faces are in shadow
and project them away, it creates two mesh segments that are detached from each other.
On the CPU, you would simply create new polygons to cover the gap. However, within the
vertex shader, you cannot create new geometry and need a way to have this done for you.
The solution to this problem lies in the creation of this geometry ahead of time in a way
that does not interfere with the original mesh.

Because we have already separated
the polygons so that none of the
vertices from your mesh are shared,
you can create new polygons,
which actually attach the polygons
together. Under normal conditions
these polygons would not show up
because they use coincidental ver-
tices, but when part of the silhou-
ette, they stretch out like a rubber
band to form a complete volume.
The construction of such geometry
is illustrated in Figure 18.8.

As you may have noticed, this process requires you to change your mesh ahead of time. By
detaching the vertices and adding “stitching” polygons ahead of time, you can do a one-
time process on the CPU that enables you to construct your silhouette at run-time on the
graphics processor.

This brings us to how you determine the silhouette on the graphics processor. With the
proper mesh and information, the task is simple. You need to find out if the face normal,
which is stored on each vertex, is in shadow. This is done simply by computing a dot prod-
uct of the normal with the light direction vector. If the vertex itself is in shadow, simply
offset its position in the direction of the light by some sufficient amount. The following
code illustrates how this can be performed:
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Figure 18.8  How geometry can be added to a mesh to
allow the creation of a fully closed shadow volume.
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void vs_main(
float3    inPos     : POSITION,
float3    inNormal  : NORMAL)

{
// Determine vert/light vector
float3 LightDir = normalize(inPos – lightPosition);

// If face is facing away from light, offset it
if (dot(LightDir,inNormal)>0)

inPos.xyz = inPos.xyz + LightDir*100;

// Transform the vertex position
Out.Pos = mul(view_proj_matrix,inPos);

}

Even though this technique requires a little more work ahead of time, it can move most
of the costs to the graphics processor. This leaves you much more processing time for
more important tasks. Although this technique was explained with a static mesh in mind,
such techniques can also be adapted to animated meshes also.

On the downside, keep in mind that this technique also has its disadvantages. It requires
you to preprocess your geometry before it can be used to cast shadows, adding a substan-
tial number of vertices and triangles to the mesh being rendered. Whether this technique
is useful for you mostly depends on where your shadow rendering bottleneck is located.

It’s Your Turn!
The following exercise will help you explore the subject of shadow mapping. The solution
to this exercise can be found in Appendix D.

Exercise 1: SOFT SHADOW MAPPING
Recent algorithms such as shadow mapping and volume shadows can produce stuffing
shadows. However, they all have the side effect of considering lights as being perfect point
lights and do not create a soft penumbra region. In this exercise, you are asked to take the
shadow mapping shader developed in this chapter and extend it to support soft shadows.
You can accomplish this by sampling several adjacent shadow map values and weighing in
the proportion of lit and unlit pixels.
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What’s Next?
Lighting is one of the most important visual cues when rendering. We had so far neglected
a crucial fact when rendering lights: Objects occlude light and produce shadows. The
intent of this chapter was to introduce to you the main principles driving shadows and
teach you some of the techniques used to render shadows on today’s hardware.

Old-style techniques, such as geometry flattening, were convenient when hardware
severely limited the geometry you could render. Such techniques work well when dealing
with shadow receivers, which can be represented as a single plane. These techniques, how-
ever, start breaking down when the complexity of your geometry increases. Because of
this, newer solutions were needed for this increased scene complexity and to take advan-
tage of the latest hardware advances.

Shadow mapping is a convenient technique to render shadows in today’s hardware. By
determining the depth of both the occluders and receivers from the light’s point of view,
you can determine for any pixel rendered whether it is in shadow or not. Although there
is some sporadic hardware support for this technique, visual problems at some angles,
because of aliasing and the texture requirements, can become overwhelming.

A different solution to the problem is to use shadow volumes. By determining the silhou-
ette for the in- and out-of-shadow regions for an occluder, you can construct a volume
that represents the 3D space for which this occluder’s shadow exists. Using this volume
and taking advantage of the hardware’s support for stencil buffering, you can determine
the areas on the screen for which shadow must exist and then appropriately darken those
areas. The major advantages of this method are that it can be implemented on nearly all
available hardware and that with its nature, you only need to know about the occluders,
and not the receivers.

It is time to move away from the topic of lighting and move on to something different.
In the last chapter of this book, I discuss advanced topics relating to geometry. I discuss
topics such as the use of bumpmapping to create a geometric level of detail. I also discuss
such topics such as displacement mapping.
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Geometry Tricks

chapter 19

Throughout this book, I have focused mostly on rendering topics that have hovered
around lighting and materials. These approaches are critical in creating more
realistic and stunning graphics, but with the advances in rendering technologies,

meshes and scenes are becoming more and more complex and dense.

Even though the hardware can handle more complex meshes, you want to maximize your
scene complexity by using a minimum of geometry. Although it may seem contradictory
at first, it makes total sense. If you were rendering an outdoor scene for a game, would you
rather be able to render 10 meshes of 20,000 polygons each or 2,000 meshes of 100 poly-
gons? The answer to this question might vary based on your situation, but the essence is
that you want to strike a good balance that gives each of your objects sufficient visual
quality yet doesn’t hinder you in the quantity of objects you can put in your scene.

In addition to this, in dynamic worlds, this balance might be even harder to achieve
because you are not able to predict ahead of time the number of objects onscreen, which
can, in turn, lead to performance issues. Because of this, you might need techniques that
enable you to control the quantity of objects in your mesh. In this chapter, I will introduce
to you a variety of level of detail, or LOD, techniques that can be used to dynamically con-
trol the quality and detail of your geometry. Although this section strays away from the
topic of shaders, it is something that I believe is an important part of rendering because
you will eventually encounter situations where you need to balance your rendering
between quality and performance.

In addition to introducing you to LOD techniques, I will spend a little time revisiting the
topic of procedural geometry. In this chapter I will especially focus on displacement map-
ping, which allows you to get geometry data not only from a vertex buffer but from other
sources, such as textures. I will teach you how these techniques will be applicable through
the use of shaders.
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Level of Detail
Geometry, in all its glory, is not necessarily intended to be presented at a specific detail
level. The reality is that an object 100 meters away covers much less of the screen than an
object 1 meter away. The natural reaction to this is that you do not need as much detail in
your mesh to achieve similar detail when a mesh is farther away. So why waste all this
graphics processor time rendering a mesh with 20,000 polygons when the average size of
a polygon is less than a single pixel?

Another situation that might occur when you are dealing with dynamic scenes is perfor-
mance-related. If all your players end up in the same room, performance problems may
start to occur. In such cases, you may prefer sacrificing the visual quality of your scene to
allow for better performance.

Whatever the situation, there is sometimes a need to have the same mesh represented at
different quality levels for you to have more control over the balance between perfor-
mance and quality. These different versions of the same mesh, commonly called levels of
detail, are essentially the same mesh represented at different levels of geometric detail.

Although the idea of using different levels of detail, or LOD, may seem simple, several
techniques can be used to represent those meshes and determine how they should be dis-
played. The following sections introduce you to some of the common techniques used in
today’s video games.

Keep in mind that because we are mostly dealing with geometric details of meshes and not
with shaders themselves in the next few sections, no RenderMonkey implementation will
be created.

Static LOD
The simplest approach to using levels of detail is to use a set of predefined versions of your
geometry. The issue then becomes how to determine the level of details, and even more
importantly, how to decide when a specific version of a piece of geometry must be used.

In this section, I will outline a few simple techniques that can be used to select the proper
geometry, but because you must first have a set of LODs to work from, let’s discuss this a
little.

Level of detail geometry generally originates from one of two sources. The first of these
techniques is to let the artists prebuild a set of various detail versions for a specific mesh.
For this to be done, most advanced 3D software tools enable you to simplify a mesh with
a wide variety of settings to control the quality of your mesh.

The advantage of the manual approach is that it gives artists full control over the 
simplification process, not only allowing them to control the quality of the rendering,
but also ensuring that no bad texture mapping or other artifacts will appear from the 
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simplification process. On the other hand, the manual process requires more time to actu-
ally generate all your levels of detail.

The second approach usually taken is to use one of those simplification tools, or a spe-
cialized one, and automate the process. Using scripts, you can create an automated tool
that takes your high resolution mesh and converts it to LODs, each of them, for example,
with 20 percent fewer polygons than the previous one. However with this approach, when
dealing with skinned characters, you may encounter difficulties because you will need to
manually re-skin all of your LODs.

Whichever approach is taken, one question arises as to how you determine which poly-
gons to throw out and which ones you need to keep. There are several metrics that can be
used to determine this, but here are a few common ones.

First of all, the idea behind geometry simplification is to reduce the number of polygons.
Because you wish to do so for rendering, you need to do it in a way that minimizes the
reduction in visual quality of the mesh. So the prime concept behind any metric is to keep
the errors introduced by the removal of polygons to a minimum.

The first simple metric is to use the size of a polygon. Keeping in mind that LOD meshes
are used when a model is at a certain distance from the camera, smaller polygons have less
of a visual impact and can be removed. This can easily be accomplished by determining
the area of the polygon and using this value to discover which polygons will be removed
first.

However, such a metric is not enough on its own. The size of a polygon isn’t the only
major criterion in the importance of the polygon. Some polygons, even if tiny, serve as
major building blocks within the geometry of a mesh and cannot simply be removed.
Although there may be many cases of
this type of situation, one way which
usually works well to detect this is to
look at the angles between the adja-
cent polygons. Polygons with soft
angles between their neighbors are
generally small detail, and removing
such polygons has a generally low
impact on the overall silhouette of the
mesh. However, removing geometry
with sharp angles causes the overall
shape of the object to degrade, and
such geometry should not be consid-
ered first for removal. The overall idea
behind this metric is explained in Fig-
ure 19.1.
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Figure 19.1  How the angle of a face contributes to
the overall shape of an object’s silhouette.
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No matter which approach is taken, you need to ensure that the quality of each level of
detail is sufficient to ensure good rendering quality. Even so, you need to determine at
which time any particular LOD needs to be displayed. There are two factors that come
into play when trying to determine this: visual needs and performance.

When discussing visual needs, you need to determine at which distance from the camera
it is appropriate to switch from one LOD to another. There are metrics that look at the
visual error between two LODs and find out at which distance this error is noticeable, but
they tend to be complex and beyond the scope of this book. However, using a set of fixed
camera distances determined by experimentation can yield good results.

The second factor to consider when determining which LOD to use is the performance of
your graphics. Because performance is generally directly tied to the number of polygons
within your scene, determining the proper LOD is a straightforward task. If your perfor-
mance falls below a certain threshold, you will then start reducing the quality of your
geometry. Say, if you are 10 percent below your target performance, reducing your geom-
etry levels by about 10 percent would bring you back on mark. I know this is a rough met-
ric, but there is no fits-all solution for you to use, and you need to experiment with a more
proper metric based on your circumstances.

One little detail to keep in mind when dealing with performance is that you want to be cau-
tious when picking your LODs so as not to make a decision too quickly. Doing so can cause
two problems. First of all, if you decide on a per-frame basis, some frames might be slower
because of other events in your game, say, an explosion. You may not wish to adapt right
away because performance will recover after the event is finished. It is generally a good idea
to average your performance calculations over several frames before making a decision.

The other factor to consider is the impact of an LOD change in the first place. Taking the
previous example, where you are 10 percent below your target performance, reducing the
LOD causes your performance to go back up. If your algorithm is based on an exact break-
ing point, you might end up ping-ponging between two levels of detail. To avoid such
issues, it is generally a good idea to keep the performance regions fuzzy so that a small
change in performance does not cause you to oscillate between different levels of detail.

Keeping all this in mind, static LOD techniques are simple and easy to implement.
Because there is no fits-all metric, you may need to experiment some to find the best bal-
ance in your application One of the biggest drawbacks to static LODs, however, isn’t the
different levels of geometry but the transition from one to another. Because you need to
change from one mesh to another at a specific point in time, even though both meshes are
of good quality, it is likely the user will notice the transition.

To reduce such artifacts, you could potentially use dynamic transitions between different
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meshes, such as fading from one to another, but even such techniques yield some visual
problems. To reduce such problems and simplify the authoring of LOD meshes, there are
progressive LOD techniques that can be used to construct meshes of any level of detail on-
the-fly. These techniques are covered in the next section.

Progressive LOD
As mentioned, the use of static LODs, although simple, can lead to artifacts due to the
instantaneous switch from one mesh to another. In addition to these visual artifacts, such
techniques require you to create a set of various LOD meshes for each of your models.
Even though it gives you good control, it requires more art time to author these models,
time which you may not have.

To work around these issues, wouldn’t it be nice if you had one single start mesh and were
able to create a new LOD on-the-fly based on your rendering criteria? You might remem-
ber that real-time mesh simplification is prohibitive. This is true, but there are techniques
that can be used to alleviate this problem.

The idea behind progressive meshes is simple. Determine offline which faces need to be
removed for simplification. Instead of building a mesh with the simplified geometry,
though, keep the original mesh, store the information from which you can take the mesh,
and simplify it at run-time.

There are several techniques you can use to accomplish this. For this chapter, we will
explore one of the most commonly used techniques developed by Hugues Hoppe of
Microsoft, simply called progressive meshes.

The representation offered by the progressive mesh, or PM, technique is useful for on-the-
fly LOD determination. In fact, this technique can also be used to do mesh simplification,
progressive geometry transmission, and even geometric compression.

The basic idea behind the PM algorithm is as follows: Take a mesh at its lowest level and
instead of representing different levels of detail, store such progressive information as how
to reconstruct the higher level of detail from this original mesh. The progressive informa-
tion is stored as a simple transformation called a VERTEX SPLIT, which essentially takes the
current mesh and adds a new vertex, thus taking an existing face and splitting it into three
new ones by adding a polygon somewhere inside the face.

By repeating the same VERTEX SPLIT process over and over, you are taking the initial coarse
LOD mesh and adding detail to it in a progressive way. Knowing the final number of poly-
gons you need in your mesh, you can find out the number of operations you need to per-
form to move from the low LOD to the target polygon count.

Level of Detail 331

TEAM LinG - Live, Informative, Non-cost and Genuine !



The process itself is composed of two steps. In the first step, you need to take your origi-
nal mesh and apply a simplification to generate your progressive mesh representation,
which is done once at authoring time. Although there are several simplification algo-
rithms out there, the technique describes its own technique, which uses a visual quality
metric. The second step defines how you can take the progressively represented mesh and
construct any LOD using the representation. In this chapter, we will briefly cover both of
these aspects.

Before we talk about simplification, it
is easier to talk about the progressive
mesh representation and how to
reconstruct a mesh. When dealing
with progressive meshes, the basic
reconstruction operation is called a
VERTEX SPLIT. On the opposite side, the
reverse operation is called an EDGE COL-
LAPSE. This operation essentially takes
an edge and collapses its two vertices
together to create a simplified version
of the geometry. This operation has
been illustrated in Figure 19.2.

After you determine a sequence of
edge collapses leading from your orig-
inal mesh to the coarsest level you want, you can simply reverse the flow of information,
thus converting your transformations to VERTREX SPLITS. This essentially takes an existing
vertex and splits it in two, re-creating the edge which was destroyed during the simplifi-
cation process.

One detail remains in regards to the properties of vertices and how they are treated. These
properties include the vertex position but also other properties, such as the vertex colors
or normals. Because you are collapsing and re-creating vertices, you need to store infor-
mation on the vertex as part of the progressive mesh representation. The technique used
to store such information can be application-dependent and can depend on whether you
want to achieve some compression. For simple purposes, you can store the attributes of
the collapsed vertices as part of the progressive mesh data.

As you can see, the whole process is simple and can easily be implemented. Because the
hard work of simplification is done ahead of time, reconstruction of a mesh simply
becomes a matter of traversing the reconstruction information and adding geometry to
the original LOD as you go. Speaking of simplification, let’s now look at how you can sim-
plify a mesh’s geometry to construct a progressive mesh stream.
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Figure 19.2  Illustration of the edge collapse
operation in progressive meshes.
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n o t e

For more information on progressive meshes, I recommend you visit Hugues Hoppe’s Web site at:
http://research.microsoft.com/~hoppe/.

The second important part of the process is the mesh simplification. Reconstructing a
mesh from a progressive representation is one thing, but you need the progressive mesh
to start with. Although this can be a complex mathematical process, I will briefly intro-
duce it to you so you have a better understanding.

As with any simplification process, you strive to reduce the number of polygons inside a
mesh but cannot simply do an arbitrary simplification. The process must define a metric
that can be used to determine, in a quantitative way, the cost of a particular simplification.
The overall goal is to reduce the total number of polygons while ensuring that introduced
errors are kept to a minimum.

To complete this process, you
need to define a metric that can
be used to quantify the energy
within a mesh. The equations for
such a metric have been illus-
trated in Figure 19.3.

As you can see from Figure 19.3,
the final metric is a sum of vari-
ous metrics. The first compo-
nent, Edist, minimizes the change
in the shape of the mesh. This
metric is simple because it simply
uses the squared geometric dis-
tance of the original mesh versus the new mesh. Keep in mind that for simplicity, this
value is defined as the geometric distance of all vertices from their original position for a
specific simplification in the mesh, not only the one you directly modified.

The second term of the metric, Espring, regularizes the optimization process. In essence, it
ensures that simplified vertices are taken uniformly from all around the mesh and are not
concentrated on a single area of the mesh.

The final two terms, Escalar and Edisc, ensure the continuity of the mesh attributes. Because
a mesh is not only defined by its vertex positions, we also need to define metrics to vali-
date the other attributes of the mesh. The first of the two terms defines a way of ensuring
that the error on the vertex attributes is minimized, similarly to the metric employed to
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Figure 19.3  Equations used for the mesh simplification
energy conservation metric.
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measure the geometric distance of the vertex positions. The second and final term is to
minimize errors on mesh discontinuities, because some attributes, such as texture coordi-
nates, may not be continuous across the mesh. You need to avoid simplifying the mesh at
those points because they will likely create big visual errors.

After the metrics are defined, the actual process is straightforward and involves two loops.
The outer loop repeats itself for the number of vertices you want to remove from your
original mesh. The second loop goes through all the vertices of the current mesh, at the
current simplification level, and evaluates the error metric for each of them. Once the
metric is evaluated, the vertex with the least error is chosen as the simplification candi-
date for this pass and is removed. At this point, proper progressive reconstruction infor-
mation for the vertex and its attributes is generated and stored in the output.

From the preceding explanation, you can understand why the simplification process can-
not be done at run-time. The advantage of the progressive mesh technique is that the sim-
plification can be done ahead of time, and you can then use the results in real-time
through the edge split information to generate the proper level of detail in your geome-
try. As you can see, the whole progressive mesh process may seem daunting and complex.
But it can make great differences in the run-time performance and quality of an applica-
tion.

A little note: This technique has been implemented as part of the DirectX 9.0 SDK and is
ready for you to use through the ID3DX9MESH interfaces.

Re-Creating Lost Details
The advantage of LOD is that it enables you to better control the visual quality and per-
formance of your application. However, whichever approach you take, you still lose some
visual detail. So you may wonder if there is any way to compensate for this lost detail. The
fact is that there is!

In Chapter 10, “Shiny Little Pixels,” I discussed the topic of bumpmapping and how it can
be used to create non-existent detail. When simplifying a mesh, you can use this infor-
mation to re-create the lost detail. Keep in mind that the geometry still stays simplified,
but the lost detail can be re-created and used for lighting purposes.

The process to re-create this lost detail involves your original mesh and the simplified one.
By mapping the simplified LOD mesh for bumpmapping, you can determine where each
pixel is in space. With this position, you can find out, by using ray-tracing techniques,
which face of the original mesh the pixel corresponds to.

By discovering this information, you can deduce in which direction the normal of the sur-
face points on the original mesh and thus determine the proper bumpmap values to rep-
resent this information. This process is illustrated in Figure 19.4.
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The process of determining a bumpmap from a high resolution geometry and a lesser
level of detail is complex and expensive. Details on the exact process are beyond the scope
of this book, but I want to mention two tools that can be used to accomplish it. Both
NVIDIA and ATI are developing tools that allow you to do just this.

NVIDIA created a tool called Melody, intended to simplify the whole process. This tool
not only generates the mesh LODs for you, but also generates the appropriate texture
mapping and bumpmaps to re-create the lost detail.

With the Melody tool, the simplification process takes advantage of an approach similar
to the progressive mesh. By using a combination of edge collapse and error metrics, the
tool is geared at giving you the best looking LODs available. In addition to the simplifica-
tion and bumpmapping process, the Melody tool also takes care of optimizing the normal
maps it generates for the best possible results.

Unfortunately, at the time of this writing, the Melody tool is still under development but
is soon to be released. So keep your eyes open.

On the flip side, ATI Technologies has developed a similar tool called NormalMapper.
This tool does not handle the creation of LODs but, given an original mesh and a 
simplified version, generates the proper texture mapping coordinates and a bumpmap to
re-create the lost detail. Their tool is already available from the developer section of their
Web site at www.ati.com.

Whether you use one of the existing tools or develop your own utilities, the use of
bumpmapping to re-create lost details for your meshes is an awesome way to improve the
visual quality of your LOD geometry. In addition, it enables artists to develop their initial
mesh at a high resolution so you can use a lesser mesh at run-time but benefit from all the
details of the initial mesh for lighting purposes.
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Figure 19.4  Process used to generate a bumpmap that re-creates lost
simplification detail by the use of two LODs.
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Displacement Mapping
In Chapter 13, “Building Materials from Scratch,” I discussed how, when dealing with
procedural materials, I made a small incursion into modifying the geometry procedu-
rally to create a new effect. In this section, I will introduce a variant on this, where 
you define a simple piece of geometry and let the hardware determine the final vertex
positions.

One thing to keep in mind before I start: This technology is currently available only on
3.0 vertex shader hardware. Because no hardware currently exists that supports this tech-
nology, the information presented here is only an introduction to keep you up to date on
what could be accomplished in future hardware generations.

Imagine you want to render a landscape. Currently, you would need to generate a grid
mesh and assign attributes, including vertex positions, to the whole grid. If you want to
represent a huge landscape, you need to store all the vertices for your world even though
only a portion is visible at a time. The major issue is that because the geometry for the
landscape is along a regular grid, a lot of the geometry is redundant because the only rel-
evant information is the height of the terrain at a particular point. In addition, creating
LODs involves creating new sets of geometry, consuming even more resources.

As with terrain, you are dealing with a uniform grid-like mesh, and replicating the grid
for each piece of terrain seems useless. Wouldn’t it be nice to have a single piece of geom-
etry and reuse it for every segment of landscape?

This is where displacement mapping comes in. By taking a uniform piece of geometry,
you will want to procedurally displace the vertices within your vertex shader to achieve the
final geometry wanted. If you have a procedurally defined landscape, it would simply be
a matter of applying a process similar to what we did in Chapter 13.

If you want the terrain to be artistically defined, you need another way to control the
shape of the terrain within the vertex shader. Because the terrain is on a grid, all that is
needed to define the final geometry is the height to apply at each vertex. This can easily be
stored as part of a texture. But wait! You can’t sample textures at the vertex shader level,
can you?

You are correct and incorrect at the same time. Although you currently cannot sample tex-
tures at the vertex shader level, the 3.0 shader model does allow you to do so, bringing dis-
placement mapping alive and a whole new slew of possibilities for you to use in the vertex
shader.

Chapter 19   ■ Geometry Tricks336

TEAM LinG - Live, Informative, Non-cost and Genuine !



One of the biggest advantages of using such displacement mapping is its independence
from the resolution of the initial mesh used. Because the height of the terrain is defined
through a texture, you benefit from mipmapping and bilinear filtering. This means that
in no way does your terrain mesh have to match your heightmap texture. You can use any
resolution of mesh, thus allowing you to fully support LOD on your landscape.

I know, you wish you could use this right now. This section is more of a teaser than any-
thing else, but I think it is a topic of interest and will become more prevalent in the next
few years as 3.0 rendering hardware starts appearing on the market.

It’s Your Turn!
For this last chapter, I have decided to let you go free without any homework. Enjoy!

Summary
Improving the quality of your graphics isn’t always a matter of materials. Manipulating
your geometry can enable you to achieve great visual gains and even enhance the perfor-
mance of your renderings.

With the proper use of level of detail, or LOD, geometry, you can achieve increased per-
formance in your scenes. Static LODs are easy to implement and can let you reduce the
overall geometry while giving you control over the quality of your visuals. On the other
hand, there are progressive meshes that require more processing but can enable you to
have a mesh that seamlessly transitions from one level of detail to another.

Whether you are using static or progressive meshes, it will likely have a negative impact,
even though minimal, on the quality of your renderings. Taking advantage of LOD tech-
nologies and bumpmapping, you can re-create some of the lost details and even create
detail not present before. With this technology, you can take your initial mesh and a lower
LOD and use a tool that can re-create this lost detail through the creation of an appro-
priate bumpmap.

Finally, the future is looking even brighter for procedural geometry. Through the upcom-
ing vertex and pixel shader 3.0 models, you will be able to do proper displacement map-
ping. By being able to sample textures at the vertex shader level, you will be able to do
forms of procedural geometry you never have been able to do before. For example, you
could render terrain geometry on-the-fly with a heightmap texture.
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What’s Next?
You have finally reached the end of your journey into the world of shaders. First of all, I
want to thank you personally for reading this book. I hope you enjoyed reading it as much
as I did writing it. At this point, you should have a good understanding of shaders in gen-
eral and have a bag of techniques that you will be able to use in your personal and pro-
fessional projects.

Shaders are the technology of today and tomorrow. With the advancement of rendering
technology, more is possible than ever before. The added flexibility provided by the new
shader technologies is bound to make real-time rendering an even more exciting field
than ever before. Because technology never sits still, I have dedicated the next few pages
to talking about where the technology stands and where it is headed in the future. It seems
like the best way to conclude this book—by giving you a glimpse into the future.

It was not that long ago that the only way of doing 3D graphics was through the use of
software or through specialized, and expensive, rendering hardware. Back then, you could
achieve some real-time graphics, but the quality and realism was so restrictive that its use
was mostly restricted to computer-assisted design software and specialized applications
such as flight simulators. The introduction of the first consumer level 3D rendering hard-
ware proved to be a true revolution, finally enabling the average joe to enjoy the benefits
of real-time 3D graphics.

Even back then, the performance of these devices was limited and the graphical realism
was poor, but they did the background work that led us to the current generation of ren-
dering hardware. Over the last decade, rendering hardware made major improvements in
terms of performance but was restricted to a fixed rendering pipeline. This pipeline,
imposing a set of rendering modes and states allowed relatively good graphics but totally
limited you in what you could achieve.

At this point, we were due for a second revolution in terms of graphics hardware. This is
where programmable shaders arrived to shake things up. With the introduction of the
new shader models came the freedom for developers to separate themselves from the fixed
rendering pipeline and explore a new level of creativity. Keeping in mind that the first iter-
ation of programmable shaders offered limited flexibility, they were the first step towards
making movie-quality CG possible at run-time on consumer-level hardware.

Recently, with the advent of the 2.0 shader model and supporting hardware, flexibility was
even more enhanced, bringing a level of flexibility and power never before imagined. This
flexibility has not only increased the creativity of developers but also allowed new algo-
rithms to be implemented that had been possible only in the realm of software rendering.
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For example, techniques such as Perlin noise or polynomial texture maps were not possi-
ble before the advent of advanced shader support. Even at its current stage, shader tech-
nology suffers from some severe limitations. For example, conditional instruction support
within pixel shaders is limited and does not give you full control. In addition, texture sam-
plings are currently available only to pixel shaders and cannot be used when processing
vertices.

The shader model 3.0 will, in theory, solve some of these problems. Although it’s sup-
ported by DirectX 9.0, no current hardware supports this model, although you should
expect some soon after this book is released. This new version allows for better branching
and looping control in addition to some limited texture sampling at the vertex shader
level. This new flexibility will allow even more powerful algorithms to be implemented in
shader form. To a limited extent, some people have even managed to implement complex
algorithms, such as ray tracing or radiosity, using the 3.0 shader models.

What are we to expect from the future? In the short term, you can expect hardware that
incorporates the 3.0 shader models. In addition, with improved silicon manufacturing
processes, we are bound to see significant improvement in terms of performance. But
looking even further into the future, what can you expect?

Of course, this is all speculative at this point, but consider the rate of progression since the
release of the first consumer 3D rendering hardware eight years ago. Looking into 
the future, and the speculation on the next release of DirectX and upcoming hardware
such as the Xbox 2, you can see that the future is looking bright.

One of the first improvements you can expect is more widespread support for floating-
point textures. By the next version of DirectX, it is expected that all texture operations will
be done in floating-point. This also implies that current issues with floating-point tex-
tures, such as the lack of alpha blending, will be resolved.

Another significant improvement to expect comes from the increased amount of flexibil-
ity being added to the shader model, vertex, and pixel shader functionality. The fact is that
with 3.0 specifications, both pixel and vertex shaders are starting to look very much alike.
It is safe to assume that very soon, the architecture of rendering hardware will be modi-
fied so that it will contain a fixed number of generic shader units that can be used to
process both pixels and vertices. This new design will allow a better performance balance
by giving the hardware control over the allocation of the processing units, depending on
whether the rendering is more vertex- or pixel-intensive.

In addition to the fundamental architectural changes in future hardware, we are bound to
see even more of a performance improvement over the next few generations. With faster
memory and smaller, yet faster processors, you will not only have more flexibility, but will
be able to do even more just because of the extra speed you gain.
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How long will it be before you can render movie-quality CG in real-time? This is a ques-
tion that is hard to answer. We are definitely getting closer, and with the latest technolog-
ical improvements, it will only be a matter of time. But one thing remains for sure: The
future is looking bright when it comes to real-time rendering, and shaders will be at 
the core!
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This section is filled with extra information and reference materials that

will be useful to you as a shader developer. The first two appendixes

include reference manuals for both Microsoft’s High-Level Shader Lan-

guage and RenderMonkey. The following appendices will give you installation

instructions for the content on the CD and solutions to most of the exercises pro-

posed throughout the book.

Appendix A: Serves as a reference manual for the HLSL shader language. This is

your best source of information on all the built-in functions and how to make

the most of this shading language.

Appendix B: Contains a user manual for RenderMonkey. Use it to familiarize

yourself with all the nooks and crannies of RenderMonkey.

Appendix C: Serves as a brief introduction to the content available on the com-

panion CD-ROM.

Appendix D: Contains in-depth solutions to all the exercises developed through-

out the book.

Appendix E: A reference shader library. Presents all the important pieces of

shader code developed throughout this book in an easy-to-use reference list.

It has been a fun and thrilling journey writing this book. I hope the knowledge I con-

veyed to you will be helpful and allows you to create the most stunning graphics!
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High-Level Shader
Language Reference

appendix A

This chapter serves as a reference manual for the High-Level Shader Language
(HLSL) from Microsoft. Although HLSL was introduced as part of the DirectX
9.0 SDK, I chose this language because of its simplicity and versatility compared

to writing shaders in pure assembly. Also, with the introduction of the Cg shading lan-
guage, which is compatible with HLSL, the knowledge you gain from reading this book is
portable to other rendering APIs and platforms without any major modifications.

The big advantage of HLSL over its assembly counterpart is that it brings shaders to you
in a more accessible way. It enables you to separate yourself from specific shader support,
register allocation, and turn over optimization decisions to the compiler.

The HLSL brings you the development of shaders in a language similar to C. It offers a
rich set of features, including functions, statements, user-defined data types, and a wide
collection of built-in functions for you to use. All this makes shader development more
oriented towards algorithm design and less concerned with figuring out how to code your
algorithm.

Keep in mind that this reference manual is loosely inspired by the HLSL reference in
DirectX 9’s documentation. For a more complete reference, we suggest reading the full
reference included as part of the DirectX 9.0 SDK’s documentation, which is included on
the companion CD-ROM.
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Data Types
Microsoft’s High-Level Shader Language features a rich set of data types to simplify
shader development. It offers types ranging from simple scalar types to vector and matrix
types as well. The following section outlines all the different types exposed by HLSL.

Scalar Types
Scalar types are defined by the HLSL stan-
dard as singular atomic values. They are
the most basic types and are used to com-
pose all the more complex ones. Table A.1
enumerates all the exposed scalar types.

Take note that not all shader targets have
native support for integer, half, or double
values. If your shader is compiled for a tar-
get that does not support a specific format,
it will be emulated through use of the float
type, and results may not be accurate.
Unless you are certain that your target platform supports a specific type, it is better to stick
with standard floating-point numbers for the sake of consistency and portability.

Vector Types
The vector type is defined by the HLSL standard as a one-dimensional array composed of
one particular scalar type. By default, a vector is an array composed of four floating-point
values. However, as shown in Table A.2, you can also manually define arbitrary vectors.

Individual vector components may be accessed in many different ways. The following list
shows different possible access modes for array components. Take note that for arrays of
a size greater than four, the components beyond the fourth must be accessed by the index.

■ By component: vector.x, vector.y, vector.z, vector.w

■ By color: vector.r, vector.g, vector.b, vector.a

■ By index: vector[0], vector[1], vector[2], vector[3]
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Table A.1 Scalar Types Available
Through HLSL

Scalar Type Possible values

bool True or false
int 32-bit signed integer
half 16-bit floating-point number
float 32-bit floating-point number
double 64-bit floating-point number

Table A.2 Vector Types Available Through HLSL

Vector Type Values

vector A vector of four float components
vector< type, size> A vector containing size components of the specified type
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Vector components can be swizzled by combining multiple components together (ex:
vector.xzzy). When swizzling, you need to use the same name set for a particular combi-
nation. As seen in the example, you can also repeat components when swizzling; this,
however, can only be used for an input value and not for an output. Also take note that
you may use the swizzle operator to access individual components of a vector when you
need a single scalar from the vector(ex: vector.x).

Matrix Types
Matrix types are defined by the HLSL standard as two-dimensional arrays comprised of
one particular scalar type. By default, a matrix is a four-by-four array composed of float-
ing-point values. However, as shown in Table A.3, arbitrary matrices can also be manually
defined.

You can address individual row-vectors of matrices by using an array style addressing. For
example, you can address a single row of a matrix by using an index such as Matrix[3]. You
may also address individual components of a matrix through an indexed row access fol-
lowed by a standard vector access, such as Matrix[2].x or Matrix[3][2].

Individual components of a matrix can also be accessed on a per-component basis using
one of the following two notations:

1-based:

_11    _12    _13    _14
_21    _22    _23    _24
_31    _32    _33    _34
_41    _42    _43    _44

0-based:

_m00    _m01    _m02    _m03
_m10    _m11    _m12    _m13
_m20    _m21    _m22    _m23
_m30    _m31    _m32    _m33
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Table A.3 Matrix Types Available Through HLSL

Matrix Type Values

matrix A four-by-four matrix of floats
matrix<type,rows,cols> A matrix of rows rows and cols columns with the specified type
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Matrices accessed using component addressing can also be swizzled in the same way as
you can with vectors (ex: Matrix._m01_m02_m03_m04). However, as with vectors, you must
ensure that you use the same addressing type. In other words, addressing types such as
_m11 and _11 cannot be mixed together. Keep in mind that component matrix access only
works for matrices with a dimension of four or less. Larger matrices will need to be
accessed by index.

Structure Types
The keyword struct is used to declare structure types. Structures are declared as compos-
ite types used to group common variables in a single entity. Structures are declared
through the following syntax:

struct [ID] {members}

After a structure is defined, it may be accessed using its identifier (ID). The following is
an example of a structure declaration and use:

struct Circle
{

float4   Position;
float  Radius;

}; // Define a new structure
Circle MyCircle; // Declare a variable of type Circle

Predefined Types
The HLSL language specification also defines a set of predefined types, which are there for
your convenience and ease of use. Table A.4 lists the types that are already predefined and
that you can use in your shaders.
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Table A.4 Predefined Types Available Through HLSL

Predefined 
Type Values

floatN A floating-point vector of size N. The value of N can be between 2 and 4.
floatNxM A floating-point matrix of size N-by-M. The values for N and M can be between 

2 and 4.
halfN A 16-bit floating-point vector of size N. The value of N can be between 2 and 4
halfNxM A 16-bit floating-point matrix of size N-by-M. The values for N and M can be 

between 2 and 4.
intN An integer vector of size N. The value of N can be between 2 and 4.
intNxM An integer matrix of size N-by-M. The values for N and M can be between 2 and 4.
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Typecasts
Typecasts are known in programming jargon as the ability to convert one type to another.
HLSL supports many built-in type conversions. Table A.5 summarizes the possible con-
versions between the built-in types.
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Table A.5 Type Conversions in HLSL

Type Conversion Validity

Scalar-to-scalar Such conversions are always valid. When casting from bool type to an integer 
or floating-point type, false is considered to be zero and true is considered to 
be one. When casting from an integer or floating-point type to bool, a zero 
value is considered to be false, and a nonzero value is considered to be true.
When casting from a floating-point type to an integer type, the value is 
rounded down to the nearest integer.

Scalar-to-vector Such conversions are always valid. This cast works by copying the scalar to fill 
the vector.

Scalar-to-matrix Such conversions are always valid. This cast works by copying the scalar to fill 
the matrix.

Scalar-to-object Such conversions are never valid.

Scalar-to-structure Valid if all elements of the structure are numeric (objects are considered non-
numeric). This cast works by copying the scalar to fill the structure.

Vector-to-scalar Such conversions are always valid. The conversion selects the first component 
of the vector to fill the scalar.

Vector-to-vector The destination vector must not be larger than the source vector. The cast 
works by keeping the leftmost values and truncating the rest. For this cast,
column matrices, row matrices, and numeric structures are treated as vectors.

Vector-to-matrix For this conversion to be valid, the size of the vector must be equal to the size 
of the matrix.

Vector-to-object Such conversions are never valid.

Vector-to-structure Such conversion is valid only if the structure is not larger than the vector and 
all components of the structure are numeric.

Matrix-to-scalar This conversion is always valid. The scalar is filled with the upper-left 
component of the matrix.

Matrix-to-vector This conversion is valid only if the size of the matrix equals the size of the vector.

Matrix-to-matrix For this type conversion to be valid, the destination matrix must not be larger 
than the source matrix, in both dimensions. The cast works by keeping the 
upper-left values and truncating the rest.

Matrix-to-object This type conversion is never valid.

Matrix-to-structure For this conversion to be valid, the size of the structure must be equal to the 
size of the matrix, and the components of the structure must all be of a 
numeric type.

Object-to-scalar This type conversion is never valid.
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Variables
The HLSL language allows you to define variables to contain constants, inputs, outputs,
and temporary values. By the standard, variables are defined through the following syntax:

[static uniform volatile] [const] type id [array_suffix] [:semantics] [= initializers];

As you can see from the syntax definition, variables can be prefixed with various key-
words, which modify the way the compiler treats the variable. Table A.6 reviews the dif-
ferent prefixes and their effects.
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Table A.5 Type Conversions in HLSL (continued)

Type Conversion Validity

Object-to-vector This type conversion is never valid.
Object-to-matrix This type conversion is never valid.
Object-to-object This type of conversion is only valid if both object types are of the same type
Object-to-structure For this type conversion to be valid, the structure must not contain more than 

one member. The type of that member must be identical with the type of the 
object.

Structure-to-scalar For this conversion to be valid, the structure must contain at least one member.
This member must be numeric.

Structure-to-vector For this conversion to be valid, the structure must be at least the size of the 
vector. The first components must be numeric, up to the size of the vector.

Structure-to-matrix For this conversion to be valid, the structure must be at least the size of the 
matrix. The first components must be numeric, up to the size of the matrix.

Structure-to-structure For this conversion to be valid, the source structure must not be larger than the 
destination structure. A valid cast must exist between all respective source and 
destination components.

Table A.6 Variable Prefixes and Their Meanings

Prefix Meaning

static For global variables, this signals that the value is internal and cannot be exposed to other 
shaders externally. For local variables, this indicates that its value will persist from call to call.
Initialization of static variables is done only once, and if no initialization value is given, zero 
will be assumed.

uniform Global variable declarations with the uniform prefix indicate that they do not change,
except between draw calls. All non-static global variables are considered to be uniform.

volatile The volatile keyword is a compiler hint to indicate that the value of this variable is to 
change often. The usage of this variable prefix allows the compiler to make better 
optimization decisions.

const Variables declared as const cannot be modified from their initialization values.
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One thing to notice from the syntax of variable declaration is the semantics part. This is
used to define a mapping within your shader between a specific variable and either actual
vertex shader or pixel shader inputs. The semantics for variables are generally defined for
vertex and pixel shader function inputs.

Statements
Statements are used to control the flow of execution of your programs. The HLSL defines
multiple types of statements for your use. The syntax for all HLSL-allowed statements is
described in the following:

{ [statements] }
[expression];
return [expression];
if ( expression ) statement [else statement]
for ( [expression | variable_decleration ] ; [expression] ; [expression]) statement

For example, the following piece of code illustrates the statement used to perform a loop
within your HLSL code.

for (int i=0;i<10;i++)
{

// Do something…
}

Expressions
Expressions are literals, variables, or some combination of literals and variables composed
using operators. Available operators and their meanings are described in Table A.7.

Unlike the C language, the evaluation of &&, ||, and ?: expressions never short-circuits
because of the way they are evaluated by the hardware.

Many of the operators are labeled as being per component (including comparison opera-
tors). This indicates that, for each component of the input value, the operation is per-
formed independently from the operations happening on the other components, and the
result is placed in the matching component of the output vector.

Functions
The High-Level Shader Language standard, like the C language, allows for the use of both
built-in functions and user-defined functions. Functions are a handy way of making your
code into reusable components and simplifying your work. In this section, I will overview
both how to build your own user-defined functions and how to take advantage of the
built-in functions HLSL has to offer.
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Table A.7 Operators for Use Within Expressions

Operator Usage Meaning Associativity

() (value) Sub expression Left to right

() id(arg) Function call Left to right

() type(arg) Type constructor Left to right

[] array[int] Array subscript Left to right

. structure.id Member selection Left to right

. value.swizzle Component swizzle Left to right

++ variable++ Postfix increment (per component) Left to right

-- variable-- Postfix decrement (per component) Left to right

+ + ++variable Prefix increment (per component) Right to left

-- --variable Prefix decrement (per component) Right to left

! !value Logical not (per component) Right to left

- -value Unary minus (per component) Right to left

+ +value Unary plus (per component) Right to left

() (type) value Typecast Right to left

* value*value Multiplication (per component) Left to right

/ value/value Division (per component) Left to right

% value%value Modulus (per component) Left to right

+ value+value Addition (per component) Left to right

- value-value Subtraction (per component) Left to right

< value < value Less than (per component) Left to right

> value > value Greater than (per component) Left to right

<= value <= value Less than or equal to (per component) Left to right

>= value >= value Greater than or equal to (per component) Left to right

== value == value Equality (per component) Left to right

!= value != value Inequality (per component) Left to right

&& value && value Logical AND (per component) Left to right

|| value||value Logical OR (per component) Left to right

?: float?value:value Conditional Right to left

= variable=value Assignment (per component) Right to left

*= variable*=value Multiplication assignment (per component) Right to left

/= variable/=value Division assignment (per component) Right to left

%= variable%=value Modulus assignment (per component) Right to left

+= variable+=value Addition assignment (per component) Right to left

-= variable-=value Subtraction assignment (per component) Right to left

, value,value Comma Left to right
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User-Defined Functions
Through the HLSL standard, you can define custom functions in a similar way to the C
language. Following is the syntax used to define your own functions:

[static inline target] return_type id ( [parameter_list] ) { [statement] };

As shown in this syntax declaration, functions can be prefixed by several keywords, allow-
ing you to change the compiler’s behavior. Table A.8 outlines the possible user-defined
function prefixes along with their meaning.

In addition to the function prefixes, all parameters declared with a user-defined function
can also be prefixed by special keywords. Table A.9 describes the allowed parameter pre-
fixes with their meaning.
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Table A.8 User-Defined Function Prefixes and Their Meanings

Prefix Meaning

Static Indicates the function will exist only within the scope of the current shader program and 
may not be shared.

Inline Shows the function’s instructions are to be copied within the calling code instead of issuing 
an actual function call. Take note that this is simply a compiler hint and does not guarantee 
this behavior. Also note that this is the current default behavior for the HLSL compiler.

Target Indicates which pixel/vertex shader version the code is intended for. This allows the 
compiler to make the best decisions when building the code. Note that you will not write 
target in your shader, but will replace it with the name of the target you wish to use, such 
as ps_2_0.

Table A.9 Function Parameter Prefixes and Their Meanings

Prefix Meaning

In Is the default behavior and shows that the parameter is intended to be read only by the 
function.

Out Is intended to indicate that the parameter is also a result value and any changes made to 
its value will be sent back to the caller.

Inout Essentially combines the behavior of both In and Out.

Uniform Points out that the value comes from constant data from within the shader.
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One last thing to consider is that functions cannot be called recursively themselves. This
is because of the way that functions are processed, compiled, and executed by the vertex
shader hardware. Following is an example of a user-defined function that performs a 
simple task:

inline float4 lighting(in float3 normal, in float3 light, in float3 halfvector, in
float4 color)
{

float4 color;
color = dot(normal,light) * color;
color += dot(light,halfvector) * color;
return color;

}

Built-In Functions
The High-Level Shader Language contains a wide variety of built-in or intrinsic functions.
Those functions will be useful when developing your shaders. The following sections
summarize each function, with a review of its functionality and example usage code.

abs
Usage: abs(value a)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function calculates the absolute value of the input. It will operate on a
per-component basis for vector and matrix inputs.

Example:

float3 values = float3( -1.0,2.0,0.0 );
float3 res = abs( values );
// res = float3( 1.0,2.0,0.0 );

acos
Usage: acos(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0
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Description: This function returns the arccosine of x. The result is computed per com-
ponent for inputs that are vectors or matrices. Input components should be in the
range of –1 to 1.

Example:

float3 vecA = float3( 1.0, 0.0, 0.0 );
float3 vecB = float3( 0.0, 1.0, 0.0 );
float dotprod = dot( vecA, vecB );
float3 angle = acos( dotprod );
// angle = angle between vecA and vecB, which is pi/2

all
Usage: all(value x)

Return type: boolean

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function tests for non-zero values. The result is calculated per compo-
nent for inputs that are vectors or matrices. The result of this function is 0 for a zero
value input and 1 otherwise.

Example:

float3 value = float3( 1,0,2 );
float3 res = all( value );
// res = float3( 0,1,0 );

Any
Usage: any(value x)

Return type: boolean

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function tests for any non-zero values in the input. The result of this
function is 0 for a zero value input and 1 otherwise.

Example:

float3 value1 = float3( 0,0,0 );
float3 value2 = float3( 1,0,0 );
float2 res;
res.x = any( value1 );
res.y = any( value2 );
// res = float2( 0,1 );
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Asin
Usage: asin(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the arcsine of the input. In case the input is either a
vector or a matrix, the result is computed per component. Each input component
should be in the range of –pi/2 to pi/2.

Example:

float value = 0.0;
float res = asin( value );
// res = 1.0;

atan
Usage: atan(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the arctangent of the input. In case the input is
either a vector or a matrix, the result is computed per component. Each input com-
ponent should be in the range –pi/2 to pi/2.

Example:

float value = 0.0;
float res = atan( value );

atan2
Usage: atan2(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: The function returns the arctangent of y/x. The signs of y and x are used 
to discover the quadrant of the return values in the range –pi to pi. The atan2 func-
tion is well-defined for every point other than the origin, even if x equals 0 and y
does not equal 0. If the input is either a vector or a matrix, the output is computed
per component.

Example:

float valueX = 1.0;
float valueY = 1.0;
float3 res = atan2( valueY, valueX );
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ceil
Usage: ceil(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the smallest integer that is greater than or equal to
the input value. If the input is either a vector or a matrix, the output is calculated per
component.

Example:

float4 values = float4( 1.0, 1.2, 2.1, 3.5 );
float4 res = ceil( values );
// res = float4( 1.0, 2.0, 3.0, 4.0 );

clamp
Usage: clamp(value x, value min, value max)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns the input clamped to the range [min, max]. If the
input is either a vector or a matrix, the output is computed per component.

Example:

float4 color = float4( 0.3, 0.5, 0.6, -1.0 );
float4 res = clamp( color * 2.0 , 0.0, 1.0 );
// res = float4( 0.6, 1.0, 1.0, 0.0 );

clip
Usage: clip(value x)

Return type: none

Minimum vertex shader version: N/A

Minimum pixel shader version: 1.1

Description: This function discards the current pixel, if any component of x is less than
zero. This can be used to simulate clip planes, if each component of x represents the
distance from a plane. This function can only be used within a pixel shader.

Example:

float4 value1 = float4( 1.0, 0.5, 0.0, -1.0 );
float4 value2 = float4( 1.0, 0.5, 0.0, 0.0 );
clip( value1 );
clip( value2 );
// Using value1 discards the pixel, value2 does not
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cos
Usage: cos(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the cosine of the input. If the input is either a vector
or a matrix, the result is computed per component.

Example:

const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = cos( values );
// res = float3( 1.0, 0.0, -1.0 );

cosh
Usage: cosh(value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the hyperbolic cosine of the input. If the input is
either a vector or a matrix, the result is calculated per component.

Example:

const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = cosh( values );

cross
Usage: cross(vector a, vector b)

Return type: vector

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns the cross product of two 3D vectors a and b. The
cross product is defined as:

float3 a,b;
float3 c = float3(a.y × b.z – a.z × b.y, a.x × b.x – a.z × b.x, a.x × b.y – a.y × b.x);
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Example:

// Compute the normal of a polygon
float3 pos1 = float3( 1.2, 2.4, -1.0);
float3 pos2 = float3( 1.5, 2.9, 0.0);
float3 pos3 = float3( -2.2, -1.4, 1.0);
float3 vectorA = normalize( pos2 – pos1 );
float3 vectorB = normalize( pos3 – pos1 ) ;
float3 res = cross( vectorA, vectorB );

D3DCOLORtoUBYTE4
Usage: D3DCOLORtoUBYTE4 (vector x)

Return type: vector

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function swizzles and scales components of the 4D vector x to 
compensate for the lack of UBYTE4 support in some hardware.

Example:

float4 value = float4( 0.1, 0.2, 0.3, 0.4 );
float4 res = D3DCOLORtoUBYTE4( value );
// res = float4( 0.4*255, 0.1*255, 0.2*255, 0.3*255 )

ddx
Usage: ddx (vector x)

Return type: same as input

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.x

Description: This function returns the partial derivative of x for the screen-space x-
coordinate. If available, this instruction uses information from other fragments being
processed to determine an estimated derivate. In case of vector or matrix inputs, the
result is calculated per component. Also note that this function is only available in
pixel shaders.

Example:

// Assuming color is the interpolated vertex color input for the
// pixel shader in question.
float4 derivate = ddx( color );
// derivate = approximation of the variation of color based on
// x screen space coordinates
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ddy
Usage: ddy (vector x)

Return type: same as input

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.x

Description: This function returns the partial derivative of x for the screen-space 
y-coordinate. If available, this instruction uses information from other fragments
being processed to discover an estimated derivate. In case of vector or matrix inputs,
the result is calculated per component.

Example:
// Assuming color is the interpolated vertex color input for the
// pixel shader in question.
float4 derivate = ddy( color );
// derivate = approximation of the variation of color based on
// y screen space coordinates

degrees
Usage: degrees (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2,0

Description: This function returns the conversion of the input values from radians to
degrees. In case of vector or matrix inputs, the result is calculated per component.

Example:
float4 vectA = float4( 1.0, 0.0, 0.0 );
float4 vectB = float4( 0.0, 1.0, 0.0 );
float angle_radians = acos( dot( vectA, vectB ) );
float angle = degrees( angle_radians );
// angle = 90.0

determinant
Usage: determinant (matrix x)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns the determinant of the input matrix x. Note that the
input matrix size must be square. The output of this function is a single scalar value.

Example:
float4x4 aMatrix;
float det = determinant( aMatrix );
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distance
Usage: distance (vector a, vector b)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2,0

Description: This function returns the distance between two points a and b. This
operation is defined as length( b – a ). Both input values must be vectors, and the 
output is a scalar.

Example:
float4 vectA = float4( 1.0, 0.0, 0.0, 0.0 );
float4 vectB = float4( 0.0, 1.0, 0.0, 0.0 );
float dist = distance( vectA, vectB );
// dist = sqrt(2)

dot
Usage: dot (vector a, vector b)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the dot product of the two vectors a and b. The dot
product is defined as a.x × b.x + a.y × b.y + a.z × b.z. This result of the operation is
equivalent to the cosine of the angle between the two vectors, if theses vectors are
normalized. Both input values must be vectors, and the output is a scalar value.

Example:
float4 vectA = float4( 1.0, 0.0, 0.0 );
float4 vectB = float4( 0.0, 1.0, 0.0 );
float angle_radians = acos( dot( vectA, vectB ) );
float angle = degrees( angle_radians );
// angle = 90.0

exp
Usage: exp (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the base-e exponential of the input value x. If the
input is a vector or a matrix, the output is computed per component.

Example:
float4 values = float4( 0.1, 0.5, 1.0, 2.0 );
float4 res = exp( values );
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exp2
Usage: exp2 (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the base 2 exponential of the input value x. If the
input is a vector or a matrix, the output is calculated per component.

Example:

float4 values = float4( 0.1, 0.5, 1.0, 2.0 );
float4 res = exp2( values );

faceforward
Usage: faceforward (value n, value i, value ng)

Return type: vector

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function determines whether a polygon is front facing. The output 
of this function is defined as –n × × sign(dot(i,ng)).

Example:

float forward = faceforward( normal, i, ng );

floor
Usage: floor (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the greatest integer that is less than or equal to x.
If the input is either a vector or a matrix, the result is calculated per component.

Example:

float4 values = float4( 1.0, 1.2, 2.1, 3.5 );
float4 res = floor( values );
// res = float4( 1.0, 1.0, 2.0, 3.0 );

fmod
Usage: fmod (value a, value b)

Return type: same as input
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Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the floating-point remainder f of a / b such that a = i
× b + f, where i is an integer, f has the same sign as x, and the absolute value of f is less
than the absolute value of b. If the input is either a vector or a matrix, the result is
computed per component.

Example:

float reminder = fmod( 10, 3 );
// reminder = 0.3333;

frac
Usage: frac (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the fractional part f of the input value x such that f is
a value greater or equal to 0 and less than 1. If the input is either a vector or a matrix,
the result is calculated per component.

Example:

float4 values = float4( 1.0, 1.25, 2.1, 3.5 )
float4 res = frac( values );
// res = float4( 0.0, 0.25, 0.1, 0.5 );

frexp
Usage: frexp (value x, out exp)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2,0

Description: This function returns the mantissa and exponent of x. frexp returns the
mantissa, and the exponent is stored in the output parameter exp. If x is 0, the func-
tion returns 0 for both the mantissa and the exponent. If the input is either a vector
or a matrix, the result is computed per component.

Example:

float exp;
float value = 1100;
float mant = frexp( value, exp ); // mant = 1.1, exp = 2
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fwidth
Usage: fwidth (value x)

Return type: same as input

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.x

Description: This function returns abs(ddx(x))+abs(ddy(x)). If the input is either a vec-
tor or a matrix, the result is computed per component.

Example:

float4 colWidth = fwidth(color);

isfinite
Usage: isfinite (value x)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns true if x is finite, false otherwise. If the input is
either a vector or a matrix, the result is computed per component.

Example:

bool res = isfinite( value );

isinf
Usage: isinf (value x)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns true if the input value x is equal to +INF or –INF,
false otherwise. If the input is either a vector or a matrix, the result is calculated per
component.

Example:

bool res = isinf( value );

isnan
Usage: isnan (value x)

Return type: same as input
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Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns true if the input value x is equal to NAN or QNAN,
false otherwise. If the input is either a vector or a matrix, the result is computed per
component.

Example:

bool res = isnan( value );

ldexp
Usage: ldexp (value x, value exp)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function is essentially the reverse operation of frexp and returns 
x × 2^exp. If the input is either a vector or a matrix, the result is computed per 
component.

Example:

float res = ldexp( mant, exp );

len / length
Usage: len (vector x) / length (vector x)

Return type: scalar

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the length of the input vector x. The result is defined
as sqrt(x.x × x.x + x.y × x.y + x.z × x.z). The input to this function must be a vector,
and its output is a scalar value.

Example:

// Manually normalizing a vector
float4 vect = float4( 1.1, 2.0, -0.6, 3.4 );
float vectlen = len( vect );
float4 normVect = vect / vectlen;
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lerp
Usage: lerp (value s, value a, value b)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns a + s × (b –a). This linearly interpolates between a
and b, such that the return value is a when s is 0, and b when s is 1. If the input values
are either vectors or matrices, the output is computed per component.

Example:

float4 Color1 = float4( 0.1, 0.5, 0.0, 1.0 );
float4 Color2 = float4( 0.7, 0.5, 1.0, 0.8 );
float4 res = lerp( 0.5, Color1, Color2 );
// res = float4( 0.4, 0.5, 0.5, 0.9 );

lit
Usage: lit (value ndotl, value ndoth, value m)
Return type: vector

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns a lighting vector (ambient, diffuse, specular, 1). The
ambient value is always returned as 1. The diffuse value is defined as diffuse = (ndotl
< 0) ? 0 : ndotl. The specular value is defined as specular = (ndotl < 0) || (ndoth < 0) ?
0 : (ndoth × m). All input values must be scalars, and the output is always a vector.

Example:

// Inputs are n = surface normal, l = incoming light direction
// h = half-vector between eye and light vectors
const float specularExponent = 32;
float ndotl = dot( n, l );
float ndoth = dot( n, h );
float4 lighting = lit( ndotl, ndoth, specularExponent );

log
Usage: log (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the base-e logarithm of x. If x is negative, the func-
tion returns indefinite. If x is 0, the function returns +INF. If the input is either a vec-
tor or a matrix, the result is calculated per component.
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Example:

float res = log( value );

log2
Usage: log2 (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the base-2 logarithm of x. If x is negative, the 
function returns indefinite, or NAN. If x is 0, the function returns +INF. If the input
is either a vector or a matrix, the result is computed per component.

Example:

float res = log2( value );

log10
Usage: log10 (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the base-10 logarithm of x. If x is negative, the func-
tion returns indefinite, or NAN. If x is 0, the function returns +INF. If the input is
either a vector or a matrix, the result is calculated per component.

Example:

float res = log10( value );

max
Usage: max (value a, value b)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns the greater of the input values a or b. If the input is
either a vector or a matrix, the result is computed per component.

Example:

float4 valueA = float4( 1.0, 2.0, 3.0, 4.0 );
float4 valueB = float4( 4.0, 3.0, 2.0, 1.0 );
float res = max( valueA, valueB ); 
// res = float4( 4.0, 3.0, 3.0, 4.0 );
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min
Usage: min (value a, value b)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns the lesser of input values a or b. If the input is either
a vector or a matrix, the result is computed per component.

Example:

float4 valueA = float4( 1.0, 2.0, 3.0, 4.0 );
float4 valueB = float4( 4.0, 3.0, 2.0, 1.0 );
float res = min( valueA, valueB ); 
// res = float4( 1.0, 2.0, 2.0, 1.0 );

modf
Usage: modf (value x, out ip)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function splits the value x into fractional and integer parts, each 
of which has the same sign as x. The signed fractional portion of x is returned. The 
integer portion is stored in the output parameter ip. If the input is either a vector 
or a matrix, the result is calculated per component.

Example:

float4 values = float4( 1.0, 1.2, 3.25, 0.3 );
float4 ip;
float4 res = modf( values, ip ); 
// res = float4( 0.0, 0.2, 0.25, 0.3 )
// ip = float4( 1.0, 1.0, 3.0, 0.0 )

mul
Usage: mul (matrix a, matrix b)

Return type: depends on input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1
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Description: This function performs matrix multiplication between a and b. If a is a
vector, it is treated as a row vector. If b is a vector, it is treated as a column vector.
The inner dimension a(columns) and b(rows) must be equal. The result has the
dimension a(rows) × b(columns).

Example:

float4x4 modelMtx, viewMtx;
float4x4 finalMtx = mul( modelMtx, viewMtx );

normalize
Usage: normalize (vector x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the normalized vector, also defined as x / length(x).
If the length of x is 0, the result is undefined.

Example:

// Compute the normal of a polygon
float3 pos1 = float3( 1.2, 2.4, -1.0);
float3 pos2 = float3( 1.5, 2.9, 0.0);
float3 pos3 = float3( -2.2, -1.4, 1.0);
float3 vectorA = normalize( pos2 – pos1 );
float3 vectorB = normalize( pos3 – pos1 );
float3 res = cross( vectorA, vectorB );

pow
Usage: pow (value x, value y)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the input value x raised to the power of y. If the
input x is either a vector or a matrix, the operation is performed per component.

Example:

float4 value = float4( 1.0, 2.0, 3.0, 4.0 );
float4 res = pow( value, 2 ); 
// res = float4( 1.0, 4.0, 9.0, 16.0 );
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radians
Usage: radians (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1

Description: This function returns conversion of the input value x from degrees to 
radians. If the input x is either a vector or a matrix, the operation is performed per
component.

Example:

float4 vectA = float4( 1.0, 0.0, 0.0 );
float4 vectB = float4( 0.0, 1.0, 0.0 );
float angle_radians = acos( dot( vectA, vectB ) );
float angle = degrees( angle_radians );
// angle_radians == radians( angle );

reflect
Usage: reflect (vector i, vector n)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1

Description: This function returns the reflection vector given the entering ray direction
i and the surface normal n. The result is defined as v = i –2 × dot(i, n) × n. The input
vectors to this function should be normalized.

Example:

// Simple environment mapping assuming Normal = surface normal
// and eyeVect = eye vector
float3 reflected = reflect( eyeVect, Normal );
float4 color = texCUBE( envmap, reflected );

refract
Usage: refract (vector i, vector n, value eta)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1
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Description: This function returns the refraction vector v, given the entering ray direc-
tion i, the surface normal n, and the relative index of refraction eta (which is defined
as the ratio between the refraction indexes for the two medias). If the angle between i
and n is too great for a given eta, refract returns (0,0,0).

Example:

// Simple refraction environment mapping assuming Normal = surface normal
// and eyeVect = eye vector
float eta = 1.0/1.4; // Air-Water refraction index
float3 refracted = refract( eyeVect, Normal, eta );
float4 color = texCUBE( envmap, refracted );

round
Usage: round (vector i, vector n, value eta)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function rounds the input to the nearest integer. If the input is either
a vector or a matrix, the result is determined per component.

Example:

float res = round (10.6); 
// res = 11

rsqrt
Usage: rsqrt (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the reciprocal square root of the input value x
defined as 1/sqrt(x). If the input is either a vector or a matrix, the result is computed
per component.

Example:

// Manual vector length and normalization
float4 vect;
float sqrLen = dot( vect, vect );
float4 normVect = vect * rsqrt( sqrLen );
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saturate
Usage: saturate (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1

Description: This function clamps x to the range of 0 to 1. This is equal to calling
clamp(x, 0, 1). If the input value is either a vector or a matrix, the result of the 
operation is determined per component.

Example:

float4 values = float4( 0.1, 1.5, -0.5, 0.7 );
float4 res = saturate( values ); 
// res = float4( 0.1, 1.0, 0.0, 0.7 );

sign
Usage: sign (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function computes the sign of x. Returns –1 if x is less than 0, 0 if x
equals 0, and 1 if x is greater than zero. If the input value is either a vector or a
matrix, the result of the operation is determined per component.

Example:

float3 values = float3( -10, 10, 0 );
float3 res = sign( values ); 
// res = (-1, 1, 0)

sin
Usage: sin (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function computes the sine of x. If the input value is either a vector 
or a matrix, the result of the operation is determined per component.

Example:

const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = cos( values );
// res = float3( 0.0, 1.0, 0.0 );
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sincos
Usage: sincos (value x, out s, out c)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the sine and cosine of x. The value sin(x) is stored in
the output parameter s, and cos(x) is stored in the output parameter c. If the input
value is either a vector or a matrix, the result of the operation is determined per 
component.

Example:
const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 s,c;
sincos( values, s, c );
// s = float3( 0.0, 1.0, 0.0 );
// c = float3( 1.0, 0.0, -1.0 );

sinh
Usage: sinh (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function computes the hyperbolic sine of x. If the input value is either
a vector or a matrix, the result of the operation is determined per component.

Example:
const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = sinh( values );

smoothstep
Usage: sinh (value min, value max, value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns 0 if x < min. Returns 1 if x > max. The function will
return a smooth Hermite interpolation between 0 and 1, if x is in the range of min to
max. If the input value is either a vector or a matrix, the result of the operation is
determined per component.

Example:

float res = smoothstep( minVal, maxVal, value );
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sqrt
Usage: sqrt (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function returns the square root of the input value x. If the input
value is either a vector or a matrix, the result of the operation is determined per 
component.

Example:

// Manual vector length and normalization
float4 vect;
float sqrLen = dot( vect, vect );
float4 normVect = vect / sqrt( sqrLen );

step
Usage: step (value a, value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.4

Description: This function returns (x >= a) ? 1 : 0. If the input value is either a vector 
or a matrix, the result of the operation is determined per component.

Example:

float3 values = float3( 1.0, 2.0, 0.5 );
float3 res = step( 1.0, values );
// res = float3( 1.0, 1.0, 0.0 );

tan
Usage: tan (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function computes the tangent of x. If the input value is either a vec-
tor or a matrix, the result of the operation is determined per component.

Example:

const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = tan( values );
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tanh
Usage: tanh (value x)

Return type: same as input

Minimum vertex shader version: 1.1

Minimum pixel shader version: 2.0

Description: This function computes the hyperbolic tangent of x. If the input value is
either a vector or a matrix, the result of the operation is determined per component.

Example:

const float pi = 3.14159;
float3 values = float3( 0.0, pi/2, pi );
float3 res = tanh( values );

transpose
Usage: transpose (matrix x)

Return type: matrix

Minimum vertex shader version: 1.1

Minimum pixel shader version: 1.1

Description: This function returns the transpose of the matrix m. If the source is
dimension m(rows) × m(columns), the result is dimension m(columns) × m(rows). A
transpose is equivalent to flipping rows and columns in the matrix.

Example:

float4x4 res = transpose( myMatrix );

Texture Lookup
The following section covers all built-in HLSL functions used for texture access within
fragment shaders. These functions can also be used within a vertex shader if your hard-
ware supports vertex shader texture access.

tex1D
Usage: tex1D (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 1.1

Description: This function performs a 1D texture lookup. s is the sampler used to access
the texture, and t is a scalar value used as the texture coordinate.

Example:

float4 color = tex1D( myTexture, coords );
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tex1D with Derivates
Usage: tex1D (sampler s, value t, value ddx, value ddy)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 1D texture lookup. s is the sampler used to access
the texture, and t is a scalar value used as texture coordinates. The inputs ddx and ddy
are screen space derivates used to manually override hardware mipmapping.

Example:

float4 color = tex1D( myTexture, cords, ddx, ddy );

tex1Dproj
Usage: tex1D proj(sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 1D projective texture lookup. s is the sampler
used to access the texture, and t is a four-component vector where the t is divided by
its last component before the texture lookup takes place.

Example:

float4 color = tex1Dproj( myTexture, coords );

tex1Dbias
Usage: tex1Dbias(sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 1D biased texture lookup. s is the sampler used to
access the texture, and t is a four-component vector. The mipmapping level is biased
by t.w before the texture lookup takes place.

Example:

float4 color = tex1Dbias( myTexture, coords );

tex2D
Usage: tex2D (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 1.1
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Description: This function performs a 1D texture lookup. s is the sampler used to access
the texture, and t is a two-component vector used as texture coordinates.

Example:

float4 color = tex2D( myTexture, coords );

tex2D with Derivates
Usage: tex2D (sampler s, value t, value ddx, value ddy)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 2D texture lookup. s is the sampler used to 
access the texture, and t is a two-component vector used as texture coordinates. The
inputs ddx and ddy are screen space derivates used to manually override hardware
mipmapping.

Example:

float4 color = tex2D( myTexture, cords, ddx, ddy );

tex2Dproj
Usage: tex2Dproj (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 2D projective texture lookup. s is the sampler
used to access the texture, and t is a four-component vector, where the t is divided by
its last component before the texture lookup takes place.

Example:

float4 color = tex2Dproj( myTexture, coords );

tex2Dbias
Usage: tex2Dbias (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 2D biased texture lookup. s is the sampler used to
access the texture, and t is a four-component vector. The mipmapping level is biased
by t.w before the texture lookup takes place.

Example:

float4 color = tex2Dbias( myTexture, coords );
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tex3D
Usage: tex3D (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 1.1

Description: This function performs a 3D texture lookup. s is the sampler used to access
the texture, and t is a three-component vector used as texture coordinates.

Example:

float4 color = tex3D( myTexture, coords );

tex3D with Derivates
Usage: tex3D (sampler s, value t, value ddx, value ddy)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 3D texture lookup. s is the sampler used to access
the texture, and t is a three-component vector used as texture coordinates. The inputs
ddx and ddy are screen space derivates used to manually override hardware mipmap-
ping.

Example:

float4 color = tex3D( myTexture, cords, ddx, ddy );

tex3Dproj
Usage: tex3Dproj (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a 3D projective texture lookup. s is the sampler
used to access the texture, and t is a four-component vector where the t is divided 
by its last component before the texture lookup takes place.

Example:

float4 color = tex3Dproj( myTexture, coords );

tex3Dbias
Usage: tex3Dbias (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0
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Description: This function performs a 3D biased texture lookup. s is the sampler used to
access the texture, and t is a four-component vector. The mipmapping level is biased
by t.w before the texture lookup takes place.

Example:

float4 color = tex3Dbias( myTexture, coords );

texCUBE
Usage: texCUBE (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 1.1

Description: This function performs a cubemap texture lookup. s is the sampler used to
access the texture, and t is a three-component vector used as texture coordinates.

Example:

float4 color = texCUBE( myTexture, coords );

texCUBE with Derivates
Usage: texCUBE (sampler s, value t, value ddx, value ddy)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a cubemap texture lookup. s is the sampler used to
access the texture, and t is a three-component vector used as texture coordinates. The
inputs ddx and ddy are screen space derivates used to manually override hardware
mipmapping.

Example:

float4 color = texCUBE( myTexture, cords, ddx, ddy );

texCUBEproj
Usage: texCUBEproj (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a cubemap projective texture lookup. s is the 
sampler used to access the texture, and t is a four-component vector where the 
t is divided by its last component before the texture lookup takes place.

Example:

float4 color = texCUBEproj( myTexture, coords );
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texCUBEbias
Usage: texCUBEbias (sampler s, value t)

Return type: vector

Minimum vertex shader version: N/A

Minimum pixel shader version: 2.0

Description: This function performs a cubemap biased texture lookup. s is the sampler
used to access the texture, and t is a four-component vector. The mipmapping level 
is biased by t.w before the texture lookup takes place.

Example:

float4 color = texCUBEbias( myTexture, coords );
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RenderMonkey Version
1.5 User Manual

appendix B

3D graphic application developers face many challenges when it comes to rendering.
Most of them include taking advantage of the current and continuously changing
hardware platforms. With the latest advances and the introduction of the more flex-

ible vertex and pixel shader versions 2.0 and 3.0, developers can now achieve a level of
flexibility and graphic realism not previously achievable.

For developers to take advantage of the new advances, a fair amount of development is
needed, restricting creativity and making the learning curve steeper. ATI Technologies
recently introduced the first fully functional version of its RenderMonkey application. As
shown in Figure B.1, this tool serves as an Integrated Development Environment (IDE)
focused on simplifying shader development. The main motivations behind RenderMon-
key are to provide

■ A powerful yet simple development environment for creating shaders

■ A standardized means of creating shaders, allowing better collaboration among
developers

■ A flexible framework not only for today’s needs but allowing for future innovation

■ An environment that finally bridges the gap between programmers and artists,
allowing both of them to work together on the same platform

■ A tool that can easily be expanded and customized to meet a particular developer’s
needs

This appendix serves as an addition to Chapter 3, going into more detail on RenderMon-
key’s IDE and its use. Keep in mind that this chapter is inspired by ATI’s RenderMonkey
User Manual and that it is included on the CD for a more complete reference.
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Installation
This section takes you through the simple installation process for RenderMonkey. We have
included on the CD the latest version of the software at the time of the printing of this
book. If you wish to get the latest version or check for updates, we encourage you to visit
the ATI Technologies website at http://www.ati.com.

Requirements
RenderMonkey has a few basic computer needs that must be met before you can install
and run it. The following list covers the most important ones:

■ Although this book assumes Windows XP for consistency, Windows 2000 (Service
Pack 2), Windows XP, Windows 98, and Windows ME are supported by Render-
Monkey version 1.0.

■ DirectX 9.0b (included on the CD).

■ At the minimum, you will need a DirectX 9.0-compliant graphics card. However, a
card supporting pixel and vertex shaders 2.0 is strongly recommended.

■ 128MB of RAM.

■ 500MB of free hard drive space.

If your hardware meets those requirements, you can use the following instructions to
install the software and get yourself ready to write shaders!
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Figure B.1  Taking a look at RenderMonkey in action.
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Installing RenderMonkey
Begin the process by selecting Install
RenderMonkey from the CD-ROM
interface. Once started, you will see a
splash screen followed by a warning
message. To continue the process, click
the Next> button. This brings up a
license screen, as shown in Figure B.2.

Although the license agreement is stan-
dard, you should still review it. When
you are ready to continue, select the
option accepting the license agreement
and click the Next> button. The follow-
ing screen asks you for an installation
path. Unless you are an advanced user
(in which case you probably are not even reading this), just keep the default value and
click Next> to continue. At this point, the software should be installing itself on your
machine. The whole process should take less than one minute to complete.

Using RenderMonkey
At this point, the RenderMonkey application should be installed and ready to run. I sug-
gest you fire it up and follow along as I guide you through its different components. I will
explain each component’s role and use, keeping the explanation as simple and to the point
as possible.

Application Toolbar
Figure B.3 illustrates
the toolbar as seen in
RenderMonkey. The
purpose of the tool-
bar is to offer you
shortcuts to common tasks you will need to perform. The following list outlines what each
toolbar button accomplishes:

Open a workspace.

Save the current workspace.
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Figure B.2  RenderMonkey’s installation license
screen.

Figure B.3  Close-up view of RenderMonkey’s application toolbar.
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Toggle on/off the Workspace Window.

Toggle on/off the Output Window.

Toggle on/off the Preview Window.

Toggle on/off the Artist Editor Window.

Compiles all shaders in the currently active effect. This is equivalent to 
pressing F7.

Compiles all the shaders within the current workspace. This can also be done
by using the F8 key.

Changes the Preview Window camera mode to Rotation.

Changes the Preview Window camera mode to Pan.

Changes the Preview Window camera mode to Zoom.

Brings the Preview Window camera back to its original position.

Changes the Preview Window camera to the overloaded camera mode.

Enables the camera’s mouse input mode.

Application Menu
The menu structure for RenderMonkey is simple. Here I’ll break it down by showing you
a fully expanded menu structure in Figure B.4. The menu structure should give you a clear
idea of which options are available and which ones have shortcut keys associated with
them. Tables B.1 through B.5 list each menu item and give a short description of what the
option does.
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Figure B.4  Expanded view of all menus within RenderMonkey.

Table B.1   File Menu Options

Option Shortcut Function

New Ctrl+N Creates a new blank workspace. If another unsaved workspace is active,
the user will be asked if he wishes to save the current workspace before 
creating the new one.

Open Ctrl+O Opens an existing workspace file.
Recent Files N/A Provides a list of the 5 most recently opened workspaces for quick 

access.
Close N/A Closes the currently open workspace. If the current workspace is 

unsaved, the user will be prompted to save prior to closing it.
Save Ctrl+S Saves the current workspace.
Save As Ctrl+Shift-S Saves the workspace under a new filename.
Import N/A RenderMonkey allows developers to create plug-ins to define their own 

file formats. You can load 3rd-party file formats through this menu 
option.

Export N/A As with the import option, developers can create export plug-ins. This 
option allows the user to save her workspace to a third-party format.

Exit N/A Quits the application, prompting the user to save any opened 
workspace.
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Table B.2 Edit Menu Options

Option Shortcut Function

Undo Ctrl+Z Allows the user to undo the last undoable operation.
Redo Ctrl+Y Redoes the last undone operation.
Cut Ctrl+X Cuts the currently selected item into the clipboard.
Copy Ctrl+C Copies the currently selected item into the clipboard.
Paste Ctrl+V Pastes the current clipboard item into the workspace.
Delete Del Deletes the currently selected workspace node.
Commit Changes F7 Forces RenderMonkey to compile and commit the currently active 

shader.
Preferences N/A Opens up the Preference dialog box, where some general 

application options can be set.

Table B.3 View Menu Options

Option Shortcut Function

Workspace N/A Toggles the visibility of the Workspace Window.
Output N/A Toggles the visibility of the Output Window.
Preview N/A Toggles the visibility of the Preview Window.
Artist Editor N/A Toggles the visibility of the Artist Editor Window.

Table B.4 Window Menu Options

Option Shortcut Function

Close N/A Closes the currently selected sub-window.
Close All N/A Closes all sub-windows.
Cascade N/A Cascades all windows.
Tile Horizontal N/A Horizontally tiles all windows.
Tile Vertical N/A Vertically tiles all windows.

Table B.5 Help Menu Options

Option Shortcut Function

About N/A Brings up a dialog box with general info about RenderMonkey 
and how to leave feedback and get support.
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n o t e

RenderMonkey saves its workspace data in an .RFX file. In essence, this is a data file following the
XML standard. XML files are a human-readable ASCII file format similar to HTML. Because of this,
you can view, browse, and edit RenderMonkey workspaces in any text editor. If you are an appli-
cation developer, you may also want to integrate RenderMonkey more directly into your applica-
tion and add native RFX support to your software.

Workspace View
Because I have already gone over RenderMonkey’s user interface
and important windows in Chapter 3, “RenderMonkey Version
1.5,” I will go straight to the meat. This section will go over the
different operations that can be done within the Workspace
view.

The Workspace view, as shown in Figure B.5, is a dockable win-
dow usually located to the left of the main window. The two
main aspects of this window are its tree view and tab control at
the bottom. At the time of this writing, there are two tabs within
the Workspace view. The Effect tab is used to view the entire
workspace and is intended for the programmer. The Art tab
allows editing only of parameters defined as artist-editable
within the workspace.

The workspace itself is organized as a hierarchical tree-view
where each item is represented as a node. As described in Chap-
ter 3, workspace nodes are of various types, but include group-
ing elements, parameters, states, and resources. Grouping
elements include Effect groups, which are intended as a mechanism to organize effects
within large workspaces. Effect groups contain one or many individual effects. Each effect,
in turn, consists of one or more render passes and global parameters for the effect.

t i p

By using the right mouse button, you can perform standard editing operations, such as copy, cut,
paste, delete, and rename, on most nodes. You can also delete a node by selecting it and pressing
the Delete key.

Some types of nodes have built-in editors defined for them. Double-clicking on such a
node brings up the associated editor. Some nodes may have multiple editors defined for
them; right-clicking and selecting Edit from the menu enables you to pick an editor to use.
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Figure B.5  Close-up
view of RenderMonkey’s
Workspace Window.
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t i p

By right-clicking on the root node of the workspace, you will notice an option called Add Default
Effect. Selecting this option fills your workspace with a simple HLSL shader. A great way to get
started on a new shader!

Effect Groups

If you want to create a new Effect Group, you should click on
the Effect Workspace node in the Workspace view. You will
then see the context menu shown in Figure B.6.

If you pick the Add Effect Group option, you will given the
choice of creating a new effect as either being empty or con-
taining a default effect. Picking either option will create a new
group for you. If you opt to create an effect group with a
default effect, the new group will contain a sample one-pass
effect for your convenience. Effect Groups can contain any of
the following items:

■ Variables

■ Stream mapping nodes

■ Models

■ Effects

■ Notes

■ Renderable textures

n o t e

Any node the RenderMonkey IDE creates for you is automatically named. Because the names cre-
ated by the application are generic, it is a good idea to rename them to something meaningful by
right-clicking on the node and selecting the Rename right-click menu option.

n o t e

As with most other workspace nodes, this node can be deleted, renamed, copied, and pasted. To do
any of those operations, select the node within the workspace view, right-click your mouse button,
and simply pick the proper operation from the context menu.

c a u t i o n

Effect Group nodes may only exist as a direct child of the Effect Workspace node. RenderMonkey
will not allow you to paste an Effect Group in another location.

Appendix B   ■ RenderMonkey Version 1.5 User Manual386

Figure B.6  Context menu
displayed when right-
clicking on the workspace
root node.
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Managing Variables

User-defined data is something essential to shader development. RenderMonkey enables you
to add variables at any point within the workspace tree, which can be directly referred to by
your shader code. If you right-click on any node within the Workspace view, you will see the
Add Variable option. From this point, you will be able to select the type of variable or built-
in variable you wish to create through a series of menus, such as shown in Figure B.7.

From this menu, you can select which data type and structure you want to use for your
new variable. You can currently pick from the following:

■ Boolean: A single value that is either TRUE or FALSE.

■ Scalar: A single floating-point, integer, or boolean value.

■ Vector: A four-component floating-point, integer, or boolean vector.

■ Matrix: A 4 × 4 floating-point, integer, or boolean matrix.

■ Color: Defines a color vector (RGBA) editable through a color picker.

t i p

Each different type of variable is represented by a different icon within the Workspace view, allow-
ing you to recognize easily how each variable is represented.

Each variable within the Workspace view can be defined as being artist-editable (available
within the Art tab of the Workspace view). By default, new scalar, vector, and matrix vari-
ables are set as not artist-editable. Color and texture variables are created as artist-editable
by default. You can change the artist-editable status and do standard editing operations on
a variable by right-clicking on its node in the Workspace view.
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Figure B.7  Adding a variable to a workspace through the
use of the right-click menu.
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For your convenience, RenderMonkey provides a set of predefined variables that contains
general system information sometimes useful for shader development. All of Render-
Monkey’s built-in variables are outlined in Table B.6.
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Table B.6 RenderMonkey’s Predefined Variables

Variable Name Type Value

time_0_X Scalar Provides a time value in seconds which repeats itself based on 
the Cycle Time value set in the Preferences dialog box.

cos_time_0_X Scalar Provides the cosine of time_0_X.
sin_time_0_X Scalar Provides the sine of time_0_X.
tan_time_0_X Scalar Provides the tangent of time_0_X.
time_cycle_period Scalar Provides the Cycle Time value set in the Preferences dialog box.
time_0_1 Scalar Provides a time value in the range [0..1] which repeats itself 

based on the Cycle Time value.
time_0_2PI Scalar Provides a time value in the range [0..2*PI] which repeats itself 

based on the Cycle Time value.
cos_time_0_X Scalar Provides the cosine of time_0_2PI.
sin_time_0_X Scalar Provides the sine of time_0_2PI.
tan_time_0_X Scalar Provides the tangent of time_0_2PI.
viewport_width Scalar Provides the pixel width of the Preview window.
viewport_height Scalar Provides the pixel height of the Preview window.
viewport_inv_width Scalar Provides 1 / viewport_width.
viewport_inv_height Scalar Provides 1 / viewport_height.
pass_index Scalar Provides the index number of the current rendering pass.
mouse_state Scalar Provides the current state of the mouse.
mouse_button Scalar Provides the button state of the mouse.
mouse_x Scalar Provides the X position of the mouse.
mouse_y Scalar Provides the Y position of the mouse.
random_fraction_1 Scalar Provides a random number in the range [0..1].
random_fraction_2 Scalar Provides a random number in the range [0..1].
random_fraction_3 Scalar Provides a random number in the range [0..1].
random_fraction_4 Scalar Provides a random number in the range [0..1].
view_direction Vector Provides the view direction vector in world space.
view_position Vector Provides the view position in world space.
view_side Vector Provides the side view direction in world space.
view_up Vector Provides the up view direction in world space.
view_proj_matrix Matrix Provides the view-projection matrix.
view_matrix Matrix Provides the view matrix.
view_inv_matrix Matrix Provides the inverse of the view matrix.
proj_matrix Matrix Provides the projection matrix.
world_view_proj_matrix Matrix Provides the world-view-projection matrix.
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Managing Effects

Effects can be created only as part of an Effect Group. To create an effect, simply right-
click on an Effect Group node and pick Add Effect: DirectX from the context menu. This
creates a new effect at the bottom of the selected group. RenderMonkey allows effect
nodes to contain any of the following:

■ Variables (or shader parameters)
■ Stream mapping nodes
■ Models
■ Cameras
■ Passes
■ Notes
■ Renderable textures

n o t e

When a new effect is added to the workspace, it is pre-populated with a sample effect for your con-
venience.

Because RenderMonkey can only display a single effect at a time,
you may need to tell it which effect is current if you have more
than one in your workspace. You can activate a specific effect by
right-clicking on the effect node and selecting Set As Active
Effect from the menu shown in Figure B.8.

As with other nodes, effects can also be renamed, deleted,
copied, and pasted with a right-click of your mouse.

Managing Render Passes

Each effect in a workspace may have one of many render passes.
A render pass is essentially a way of representing each time a
piece of the effect is rendered. A simple example of why multi-
ple passes are needed would be a scene where you want to ren-
der a background and then render an object in front of the
background. Each of them will need a separate rendering pass.

To create a new rendering pass, you must right-click the mouse to bring up the context
menu and select the Add Pass option. Note that passes can only be added as part of an
effect node and may only contain the following:

■ Variables (or shader parameters)

■ A single Render State node
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Figure B.8  Context
menu displayed when
you right-click on an
effect node.
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■ A single Vertex Shader node

■ A single Pixel Shader node

■ Textures

■ A single Camera reference

■ A single Stream Mapping reference

■ A single Geometry Model reference

■ A single Render Target

■ Notes

As with other nodes, render passes can be moved, copied,
renamed, and deleted. However, because the order of
passes is important for rendering and because they are
rendered in the order in which they are listed, you can
change the position of a render pass in an effect by click-
ing and dragging it into the proper position. Figure B.9
shows the right-click menu for a Render Pass node.

In addition to standard node operations, you can enable
or disable a rendering pass by selecting the Enable/Disable
Pass option from the right-click menu. The render pass
then appears as crossed-out within the workspace view to
show it is disabled.

Managing Vertex and Pixel Shaders

The version of RenderMonkey included with this
book supports vertex shader version 1.1 through 2.0
and pixel shader version 1.1 through 2.0. Although
RenderMonkey supports both HLSL and assembly
shaders, this books focuses only on HLSL and will
not go into details of assembly level shaders.

To create a new pixel or vertex shader, you must
select an effect to which you want to add the shader,
and then right-click on that effect. This brings up
the context menu, from which you can select either
Add Pixel Shader or Add Vertex Shader and then
DirectX HLSL to add the wanted shader, as shown in
Figure B.10.
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Figure B.9  Right-click context
menu for a Render Pass node.

Figure B.10  Adding a shader
through the context menu.
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As with other nodes in RenderMonkey, you may copy, rename, move, and delete shader
nodes. Because shaders can only exist within render passes, they may only be copied or
moved to other render passes.

This section only discusses creation and management of shaders. The “Shader Editor” sec-
tion later in this appendix covers editing shaders in more detail.

Managing Render States

Each render pass can have many render states that it may either set explicitly or inherit
from a higher level pass or effect. To set hardware render states, you must create render
state blocks at any point within your workspace. To create a render state node, simply
right-click on any node within your workspace view and select Add Render State Block
from the context menu.

If no render state block is created within a rendering pass, the application looks up the work-
space hierarchy and inherits the render states of the first block found. If RenderMonkey
can’t find a render state block to inherit from, it creates one automatically for you.

As with other nodes, render states can be manipulated with standard operations such as
Copy, Cut, Paste, Rename, and Delete. However, because render states are inherited and
overridden, care must be taken when moving state nodes so that no invalid state occurs.

To edit render states, you can either double-click
the node within the workspace or select Edit from
the right-click menu. This brings up the render
state editor window shown in Figure B.11.

To edit a specific render state, left-click on the
Value column for that render state. You can then
either pick a value from a drop-down list or input
a value directly (depending on the type of render
state). If the current render state block inherits
values from a higher level node, the inherited val-
ues are shown under the Incoming column.

Because RenderMonkey uses the DirectX 9.0 SDK
internally, it exposes its render states as Direct3D
states. Because you may not be familiar with
Direct3D, the following section reviews the avail-
able render states.
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Figure B.11  RenderMonkey’s Render
State Editor Window.
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D3D Render States

In this section we will review the Direct3D render states exposed by RenderMonkey. Keep
in mind that this overview is intended as a quick reference and only covers the render
states most commonly used. For more details on all render states, you should refer to the
DirectX 9.0 SDK Documentation (included on the CD).

ALPHABLENDENABLE, BLENDOP, SRCBLEND, and DESTBLEND

This state controls whether rendering is done with alpha-blended transparency. If blend-
ing is disabled (set to FALSE, which is the default behavior), all rendering is opaque and
alpha values are ignored. If blending is enabled, the type of alpha blending is determined
by the SRCBLEND and DESTBLEND render states. SRCBLEND and DESTBLEND can be set with the val-
ues listed in table B.7.

When the blend factors are defined for both source and destination, the BLENDOP value is
used to control how the values are combined. The set of possible blending operations are
listed in Table B.8.
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Table B.7 SRCBLEND and DESTBLEND Options

Option Function

ZERO Blend factor is (0, 0, 0, 0).
ONE Blend factor is (1, 1, 1, 1).
SRCCOLOR Blend factor is (Rs,Gs,Bs,As).
INVSRCCOLOR Blend factor is (1 - Rs, 1 - Gs, 1 - Bs, 1 - As).
SRCALPHA Blend factor is (As, As, As, As).
INVSRCALPHA Blend factor is ( 1 - As, 1 - As, 1 - As, 1 - As).
DESTALPHA Blend factor is (Ad, Ad, Ad, Ad).
INVDESTALPHA Blend factor is (1 - Ad, 1 - Ad, 1 - Ad, 1 - Ad).
DESTCOLOR Blend factor is (Rd, Gd, Bd, Ad).
INVDESTCOLOR Blend factor is (1 - Rd, 1 - Gd, 1 - Bd, 1 - Ad).
SRCALPHASAT Blend factor is (f, f, f, 1); f = min(A, 1 - Ad).
BOTHINVSRCALPHA Source blend factor is (1 - As, 1 - As, 1 - As, 1 - As), and destination blend factor is 

(As, As, As, As); the destination blend selection is overridden.
BLENDFACTOR Constant color-blending factor (BLENDFACTOR).
INVBLENDFACTOR Inverted constant color-blending factor used.
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ALPHATESTENABLE, ALPHAFUNC, and ALPHAREF

This render state defines whether per-pixel alpha testing is to occur. If the test passes, the
pixel is processed by the frame buffer. Otherwise, all frame-buffer processing is skipped
for the pixel. The test is accomplished by comparing the incoming alpha value with the
value defined by ALPHAREF. The ALPHAFUNC render defines how both alpha values are com-
pared. Possible values are for this render state are

■ NEVER

■ LESS

■ EQUAL

■ LESSEQUAL

■ GREATER

■ NOTEQUAL

■ GREATEREQUAL

■ ALWAYS

COLORWRITEENABLE*

This render state enables a per-channel write for the render target color buffer. This
enables you to selectively turn on or off writing of specific color/alpha channels. Note that
COLORWRITEENABLE1, COLORWRITEENABLE2, and COLORWRITEENABLE3 exist to allow support for mul-
tiple render targets. Valid values for this render state can be any combination of ALPHA, BLUE,
GREEN, or RED.

CULLMODE

Specifies how the hardware will perform its back-facing culling of rendered triangles. This
render state can be set to one of the following: CCW, CW, or NONE. For most geometries, front-
facing polygons are defined as being counterclockwise, or CCW.

Using RenderMonkey 393

Table B.8 BLENDOP Options

Option Function

ADD Result = Source + Destination
SUBTRACT Result = Source - Destination
REVSUBTRACT Result = Destination - Source 
MIN Result = MIN(Source, Destination) 
MAX Result = MAX(Source, Destination)
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STENCIL*, TWOSIDEDSTENCILMODE, and CCW_STENCIL*
These are miscellaneous render states for controlling the stencil buffer. Stencil buffering
enables you to do bit tests and masks out specific regions for rendering. This is especially
useful for volume shadows. For more general information on stenciling, refer to the
DirectX 9.0 SDK documentation.

ZENABLE and ZFUNC
The depth value of the pixel is compared to the depth-buffer value. If ZENABLE is set to true,
the comparison will be used to determine if the fragment should be rendered. The test
done is determined by the value of ZFUNC, which compares the current pixel depth with the
depth buffer value and can be any of the following:

■ NEVER
■ LESS
■ EQUAL
■ LESSEQUAL
■ GREATER
■ NOTEQUAL
■ GREATEREQUAL
■ ALWAYS

ZWRITEENABLE

This state determines whether the application writes to the depth buffer when a pixel is
drawn. If this render state is set to TRUE, any pixel rendered will overwrite the current depth
buffer value with its own value.

Application Preferences
You may change several of RenderMonkey’s operating parameters by selecting the Prefer-
ences option under the Edit menu. Under the General property page, you can change sev-
eral options, including

■ Cycle Time: This setting defines the cycling period, in seconds, for the timer used
to fill the time_* predefined shader variables.

■ Auto Refresh: RenderMonkey can periodically scan the disk for changed textures
and models and reload them. This option enables you to set the frequency, in sec-
onds, with which RenderMonkey should scan your computer for updated files.

■ Default Directories: This option enables you to set the default directories Render-
Monkey will use to assess textures and models.

■ Rendering Refresh Rate: By setting this parameter, the user can control the rate at
which the Preview window is updated.
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■ Reset Camera on Effect Change: When a user changes the current active effect, this
setting determines whether the camera position and orientation is automatically
reset.

Modules
RenderMonkey is built around modules, which construct its functionality. In essence,
every subwindow within the tool is considered a module. Although I overviewed many of
those modules in Chapter 3, I will now explain more fully how you can use them.

Viewing Your Shaders

As shown in Chapter 3, the preview module
enables you to view the results of your effects.
To view a particular effect, it must currently be
active. To activate an effect, right-click on its
node and select the Set as Active Effect from 
the context menu. In the current version of
RenderMonkey, the preview window, as shown
in Figure B.12, is displayed using DirectX 9.0.
So please make sure you have the latest DirectX
drivers installed on your computer.

RenderMonkey provides a simple interface for
controlling the camera settings for the effect
being rendered. This is accomplished using two
features: the camera nodes and camera mode.
The use of camera nodes enables you to create
multiple cameras with multiple possible cam-
era settings, which can be set by using the Camera Editor. Although you may have multi-
ple cameras associated with a particular effect, only one can be active. To activate a
camera, simply right-click the camera reference node in the workspace for the active effect
and click the Use Active Camera option.

n o t e

If you do not want to create your own cameras in a RenderMonkey workspace, the software uses
a default built-in camera.

When a camera is active, the user can use the mouse to manipulate it within the Preview
window through a trackball-like interface. The trackball interface has several modes that
can be activated with the right-side toolbar buttons. Table B.9 outlines the different pos-
sible camera modes.
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Figure B.12  RenderMonkey’s Preview
window showing a sample shader in action.
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The right-click context menu for the Preview window, shown in
Figure B.13, offers a few extra options to simplify navigation. You
can change general rendering properties, switch from hardware to
emulated rendering, force the camera to a specific orientation, and
even display bounding boxes on the objects in your scene.

Output Window

As discussed in the Chapter 3, this window is located at the bot-
tom of the application interface and offers information regarding
shader compilation and other application tasks. Any messages,
warnings, or errors originating from your workspace are displayed
in this window, as shown in Figure B.14.
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Table B.9 Preview Window Camera Modes

Mode Function

Rotate Camera Selecting this mode locks the camera into a rotation-only mode. By using the left 
mouse button, you will be able to change the orientation of the camera. This is the 
default camera mode.

Pan Camera Selecting this mode locks the camera into panning mode. By using the left mouse 
button, you will be able to slide the camera around.

Zoom Camera Selecting this mode locks the camera into zoom mode. By using the left mouse 
button, you will be able to control the camera’s zoom.

Camera Home Clicking this button resets the camera to its initial position and orientation.
Overloaded Camera Selecting this mode uses the overloaded mode for the trackball. The left mouse 

button rotates the camera, Ctrl+left mouse button pans the camera, and the 
middle mouse button (or the mouse wheel) controls the zoom.

Figure B.13  Preview
window’s right-click
context menu.

Figure B.14  Sample output shown in the Output window.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Stream Mapping

The stream mapping module in RenderMonkey enables you to set up geometry data
stream for use by your shaders. The stream contains information such as vertex position
and color. However, because of the flexibility of shaders in general, you need to be able to
define the format of the data sent to your code.

To create a new stream mapping node, you can right-click your mouse on an effect, pass,
workspace, or effect group node, and then select the option named Add Stream Mapping
from the context menu. As with other nodes, this node can also be moved, renamed, or
deleted with the right-click menu or proper keyboard keys.

After you create a stream mapping
node, you can edit it by either 
double-clicking on the node or by
right-clicking and selecting Edit
from the context menu. This brings
up the stream mapping editor
shown in Figure B.15.

At this point, you can add channels
with the Add button and adjust
each channel’s settings by using the
drop-down boxes. The Usage and
Index columns indicate what kind of data will be stored in the input register. Finally, the
Data Type column indicates how the data should be formatted before it is sent to the
hardware (mostly useful to test vertex compression). To delete a particular channel, sim-
ply click the X button at the end of the row for the channel you wish to delete.

Stream mappings must be created at the Effect workspace level. This enables you to cre-
ate multiple mappings, which may be used by different effects or passes. To use a stream
mapping within a specific pass, you may create a reference to a stream mapping by right-
clicking on the pass node and selecting Add Stream Mapping Reference from the context
menu.

Shader Editor

To edit a specific shader, you can double-click its workspace node or select Edit… from
the context menu that appears when you right-click the node. This opens the shader edi-
tor window. Each tab at the top of the window denotes each shader for each pass associ-
ated to the current effect.
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Figure B.15  Close-up view of the stream mapping
editor.
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RenderMonkey and its shader editor currently support two languages for defining shader
code (Assembly and HLSL). The shader editor presented in each case is slightly different
to account for different features available in each language. However, because I will con-
centrate only on HLSL in this book, I will not spend time describing the assembly shader
editor.

t i p

RenderMonkey does not automatically reprocess your shaders when you change their code. To tell
RenderMonkey you are done editing, click the Commit Change button on the toolbar. This forces
the tool to recompile your shaders and display the appropriate output either in the Preview win-
dow or the Output window.

The High Level Shading Language Editor, as shown in Figure B.16, is composed of two
separate sections. The top portion is used to manage shader parameters. The bottom sec-
tion of the editor is the actual code editor where you type in your shader instructions!
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Figure B.16  Snapshot of RenderMonkey’s HLSL Shader
Editor.
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The two last things that are worth mentioning at the moment for the Editor dialog box are
the Entry Point and Target fields. The Entry Point field is the name of the HLSL function
that will be called within your shader to start execution. Because an HLSL shader can con-
tain sub-routines, you need to let the compiler know which function is the main function.
This field is filled with main by default, but you can easily override this value. The second
thing of interest is the Target value. This drop-down list defines which different compiler
targets to use when processing your shader code. This essentially indicates which version of
pixel and vertex shaders you want your compiler to use and turns on proper validation to
ensure you do not use features that are not available in a specific shader target.

Editing Variables

To edit any variable in RenderMonkey, simply double-click on its node within the work-
space. You may also edit the variables by right-clicking on them and selecting Edit from
the context menu.

Boolean Variables

All boolean values can be either TRUE or FALSE only. Boolean values do not have a built-in
editor but can be changed by clicking the Boolean Value item when you right-click on
their node.

Scalar Variables

All scalar values can be edited by the Scalar
Variable Editor shown in Figure B.17. Within
the editor, you can edit any number by simply
typing in a value in the edit box. Alternatively,
you can change the values interactively by
clicking the little arrow button next to the edit
box, which will bring up a pop-up slider that
can be dragged. Also notice the Clamp from field, which allows you to restrict the range
of allowable values, which is handy for setting up the artist editor.

Vector Variables

The Vector Variable Editor looks and behaves simi-
larly to the Scalar editor, as shown in Figure B.18. All
numerical fields behave in the same way as with the
Scalar Variable Editor. The only difference to note is
the Keep Vector Normalized checkbox, which can be
used to force RenderMonkey to always normalize this
vector before sending the values off to your shader.
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Figure B.17  Close-up view of the Scalar
Variable Editor.

Figure B.18  Close-up view of the
Vector Variable Editor.
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Matrix Variables

The matrix follows essentially the same scheme
as the Vector and Scalar Editor, as shown in Fig-
ure B.19. Not much more to say here, with the
exception of the Set to Identity Matrix button,
which is a quick and easy way to reset the matrix.
Also, there is no field to control the range of
values.

Color Variables

Every color variable can be edited with the Color Variable
Editor shown in Figure B.20. With the color picker, users can
select colors visually or input color values either in RGB or
HSV color space (with the use of the drop-down list at the
bottom of the dialog box). The final color selected is shown
in the little box found at the upper left corner of the editor.

Model, Texture, Cubemap, and Volume Texture
Variables

When you edit any of these types of variables, you will be
brought to a File Selection dialog box. Models and textures
need external data in the form of a file, and you must select a
file of the proper format. At the time of this writing, Render-
Monkey supports the following file formats:

Models: .3DS (3D Studio), .X Microsoft Direct X File
Texture: .DDS (Direct Draw Surface) , .BMP, .JPG, .TGA
Cubemap and Volume Texture: .DDS (Direct Draw Surface) 

Artist Editor

One of the problems faced by shader developers is how to allow non-technical artists to
experiment with shader parameters to achieve a final wanted effect. RenderMonkey’s
approach to this problem is known as the artist editor in combination with the Art Tab at
the bottom of the workspace window.

During shader development, the programmer can select which variables from his shader
are of interest to artists and flag them as artist editable. To do this, simply right-click on
any variable node and select the Artist Variable item from the context menu. When a vari-
able is flagged as artist editable, you will notice a little yellow icon overlaid over the regu-
lar icon within the workspace view. After variables are flagged, artists can edit them using
either the Art tab or through the artist editor, shown in Figure B.21, which can be opened
through the painter’s palette icon on the toolbar.
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Figure B.19  Close-up view of the Matrix
Variable Editor.

Figure B.20  Close-up view
of the Color Variable Editor.
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Where Do We Go from Here?
With the content of this appendix and our RenderMonkey introduction in Chapter 3, you
should have a good understanding of its use and feel comfortable enough to start writing
your own shaders. Don’t worry! You shouldn’t expect to be a pro right off the bat! As with
everything in life, it is always a matter of practice and experience.

If you do need more information about RenderMonkey, technical support, or guidance,
please go to ATI Technologies website at http://www.ati.com. There you can find support,
articles, demos, and much more.

I would also like to take a few lines to thank ATI Technologies for letting us use Render-
Monkey throughout the book. You guys have done a great job with this tool, and I am
more than happy to take advantage of it!
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Figure B.21  Screenshot of RenderMonkey’s Art Workspace and Artist
Editor.
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What’s on the CD

appendix C

The CD included with this book contains resources intended to be used in conjunction
with the text. It includes an auto-installer, so all you have to do is insert the CD into your
CD player and the installer will launch itself.

The contents of the CD are detailed in this appendix.

Source Code
Most importantly, the CD includes the full source code for all the shaders developed
throughout the book. These are arranged by chapter, with each project having its own
directory within the chapter directory. To ensure that every shader in the chapter can 
be compiled on its own, each directory contains all the necessary assets along with the
RenderMonkey workspaces.

Also note that the solutions to each of the exercises are included along with the shaders
for each chapter. For example, the solution to the first exercise in Chapter 5 is named
shader_ex1.rfx and can be found in the Chapter_5 source code directory.

Installation: The source code to the shaders developed within this book does not require
installation. To access the code, simply insert the CD-ROM and pick Source Code from
the main menu of the CD-ROM interface. Doing so takes you to a separate menu where
you can select the chapter you want to access; this will bring up an explorer window with
the shader contents for that chapter.
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RenderMonkey
Included on the CD-ROM is the latest version of the RenderMonkey tool developed by
ATI Technologies. This is probably the most important part of the CD because all the
shaders in this book are developed using RenderMonkey.

At the time of this writing, Version 1.5 of the RenderMonkey tool was the latest version
available and is included on the CD-ROM. See Appendix B, “RenderMonkey Version 1.5
User Manual,” for more information on how to use this tool.

Installation: To install RenderMonkey, simply insert the CD-ROM into your computer
and select the Tool option from the main menu. This will bring you to a separate menu
where you can select the Install RenderMonkey 1.5 option. Doing so will start the instal-
lation process. For details on this process, please refer to Appendix B.

High Resolution Illustrations
This book is printed in black and white and cannot do complete justice to all the color
illustrations and screenshots it contains; therefore, a high resolution color version of each
illustration is included on the CD-ROM.

Installation: The illustrations do not require installation and can be browsed directly
from the CD-ROM. To facilitate browsing, the illustrations are included in a Web-
browsable form. To view them, simply select the Figures option from the CD-ROM’s 
main menu.

DirectX 9.0 SDK
Microsoft developed the DirectX SDK to empower 3D developers and enable them to cre-
ate 3D applications while taking advantage of hardware acceleration on the Windows
platform. Although you will not use the SDK directly, its runtime is required by Render-
Monkey. Because of this, we have elected to include the DirectX 9.0 SDK as part of the
CD-ROM.

Installation: To install the DirectX SDK, simply insert the CD-ROM into your computer
and select the Tool option from the main menu. This will bring you to a separate menu
where you can select the Install DirectX option.

NVIDIA Texture Library
NVIDIA has developed a set of free textures that can be used by developers and artists in
their own projects. Although this Texture Library can be downloaded online, it is fairly
significant in size, which can take a long time to download. Because of this, we have opted
to include it on the CD for your use and convenience in your shader development expe-
riences.
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Installation: To install the NVIDIA texture library, simply insert the CD-ROM into your
computer and select the Tool option from the main menu. This will bring you to a sepa-
rate menu where you can select the View the NVIDIA Texture Library option. Doing so
will bring up an explorer window where the library is located. To install the library, sim-
ply open the ZIP package and follow the included instructions.

NVIDIA Photoshop Plug-In
The ability to generate .DDS-compressed textures, cubemaps, and normal maps is crucial
as part of shader development. NVIDIA has created a plug-in for use in the Adobe Pho-
toshop image editing tool that enables you to process textures in a format that is more
convenient for shader development and for use in DirectX.

Photoshop itself is not included on the CD-ROM because it is a commercial application.
However, you can download a trial version for your evaluation at www.adobe.com.

Installation: To install the NVIDIA Photoshop plug-in, simply insert the CD-ROM into
your computer and select the Tool option from the main menu. This will bring you to a
separate menu where you can select the View the NVIDIA Photoshop Plug-in option. This
will bring up an explorer window of where the plug-in is located. To install it, you need to
copy it to the proper plug-in folder. For more information on this, please consult your
Adobe Photoshop User Manual.

NVIDIA Photoshop Plug-in 405
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Exercise Solutions

appendix D

T
his chapter contains complete solutions to all exercises presented in the “It’s Your
Turn” sections throughout this book. The solutions have been divided by chapter
and exercise number for easy reference. I have tried to present solutions in a form

as complete as possible and have also included the solutions on the CD-ROM for refer-
ence. But keep in mind that with any problem or exercise, there is not always a single valid
solution.

Chapter 4
Exercise 1: Animating a Texture
In this exercise, I asked you to do a simple animation on the teapots of the shaders devel-
oped during the chapter. For the first part, you need to apply animation to the texture
coordinates of the first teapot object. To do this, it was recommended that you use the
cos_time_0_X and sin_time_0_X built-in variables.

The first step in creating this shader is to define those variables in your workspace by
right-clicking on the Effect node for your shader and selecting Add Variable. Pick the
SCALAR type and select the right built-in variable from the Predefined variable menu. Repeat
the process for both cos_time_0_X and sin_time_0_X. Those built-in variables will present
you a time-varying number based on the sine and cosine of RenderMonkey’s internal
clock.

With those variables defined in your workspace, bring up the shader editor for your first
teapot’s vertex shader and add the two variables to your shader. Because the texture 
coordinates for our object have two components (X and Y), I decided to increment the X
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component with cos_time_0_X and the Y component with sin_time_0_X. This can be done
with the following code:

Out.Txr1 = float2(Txr1.x+cos_time_0_X,Txr1.y+sin_time_0_X);

Integrating this code into our current vertex shader, we get the following final code:

float4x4 view_proj_matrix;
float cos_time_0_X;
float sin_time_0_X;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float2 Txr1: TEXCOORD0)

{
VS_OUTPUT Out;

// Output the transformed and projected vertex position
Out.Pos = mul(view_proj_matrix, inPos);

// Output the animated texture coordinate
Out.Txr1 = float2(Txr1.x+cos_time_0_X,Txr1.y+sin_time_0_X);

return Out;
}

For the second part of the shader, you needed to open the pixel shader for the second
teapot and animate its color by using the same cos_time_0_X and sin_time_0_X variables. To
do this, you needed to add the variable declarations to your pixel shader and then simply
change the color output to use those variables instead of our previous color constants. The
following code shows an example of how this can be done:

sampler Texture0;
float4 ps_main( float4 inDiffuse: COLOR0 ) : COLOR0
{

//  Output constant color:
float4 color;
color[0] = color[3] = cos_time_0_X;
color[1] = color[2] = sin_time_0_X;
return color;

}
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With those changes applied to your shader, you
can now compile the workspace and see the final
shader through the Preview Window as shown in
Figure D.1. The complete RenderMonkey work-
space for the solution to this exercise can be found
as shader_ex1.rfx under the source code directory
for Chapter 4.

Exercise 2: Blending Two Textures
In this exercise, I asked you to add a texture to the first teapot of the shader from the pre-
vious exercise and to blend the two textures together. The first step in performing this is to
create a second texture variable within your shader and point it to the supplied texture file
distortion.tga. After this is done, you must also create a new Texture Object node within
the render pass for the first teapot and point it to the newly created texture variable.

Then you need to modify your vertex shader to pass a second set of texture coordinates to
the pixel shader. This is done by changing the VS_OUTPUT structure to add a new texture
coordinate with the semantics TEXCOORD1 and to fill this value within your vertex shader.
The resulting code for this is as follows:

float4x4 view_proj_matrix;
float cos_time_0_X;
float sin_time_0_X;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;
float2 Txr2:    TEXCOORD1;

};

VS_OUTPUT vs_main(
float4 inPos: POSITION,
float2 Txr1: TEXCOORD0)

{
VS_OUTPUT Out;
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Figure D.1  Rendered output for our
animating texture and color exercise.
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// Transform and project the vertex position
Out.Pos = mul(view_proj_matrix, inPos);

// Output the animated texture coordinate
Out.Txr1 = float2(Txr1.x+cos_time_0_X,Txr1.y+sin_time_0_X);

// Output our second texture coordinate
Out.Txr2 = Txr1;
return Out;

}

With this vertex shader change, we need to modify our pixel shader to accept the new tex-
ture coordinate, add a sampler for the second texture, read pixels from our second texture,
and blend the two colors together. The following is the pixel shader code to do this:

sampler Texture0;
sampler Texture1;
float4 ps_main(

float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0,
float2 inTxr2: TEXCOORD1) : COLOR0

{
//  Output blended color
return tex2D(Texture0,inTxr1)*tex2D(Texture1,inTxr2);

}

Compile this new shader, and your Preview 
Window should show you your new shader in
action, as illustrated in Figure D.2. The complete
solution to this exercise can be found on the 
CD-ROM as shader_ex2.rfx in the source code
directory for this chapter.
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Figure D.2  Rendered output for our
texture blending exercise.
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Chapter 5
Exercise 1: Old Time Movie
In this simple exercise, I asked you to implement a sepia shader using the general color
conversion matrix shader developed in Chapter 5. The only thing you needed to do was
to change the grayscale color matrix to account for the tone shift. To add the tone shift,
you simply needed to input the tone values in the last column of the matrix and ensure
that the alpha component of the incoming colors was set to 1. Figure D.3 shows you the
complete color conversion matrix along with the rendered output for the shader. The
complete solution for this exercise can be found in the source code directory for this chap-
ter as shader_ex1.rfx on the CD-ROM.

Exercise 2: Gauss Filter
In this exercise, you were asked to implement a blurring filter using the seperatable ver-
sion of a 49 sample Gauss filter. Because of the seperatable nature of the filter, you had to
implement two blurring passes. The passes follow the same code architecture used for the
other blurring filters and had the following tables:

// Horizontal Gauss Filter Pass
const float4 gaussFilterOffset[7] = {

-3.0f, 0.0f,  0,  1/64,
-2.0f, 0.0f,  0,  6/64,
-1.0f, 0.0f,  0,  15/64,
0.0f,  0.0f,  0,  20/64,
1.0f,  0.0f,  0,  15/64,
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2.0f,  0.0f,  0,  6/64,
3.0f,  0.0f,  0,  1/64

};

// Vertical Gauss Filter Pass
float4 gaussFilterOffset[7] = {

0.0f,-3.0f,0,1/64,
0.0f,-2.0f,0,6/64,
0.0f,-1.0f,0,15/64,
0.0f,0.0f,0,20/64,
0.0f,1.0f,0,15/64,
0.0f,2.0f,0,6/64,
0.0f,3.0f,0,1/64

};

Figure D.4 shows the final rendered output for this
exercise. The complete solution for this exercise
can be found in the source code directory for this
chapter as shader_ex2.rfx on the CD-ROM.

Chapter 6
Exercise 1: Multiple Impostors
In this exercise, I asked you to expand on the depth impostor shader developed in Chap-
ter 6. Because the basic shader displayed sharp transitions between the in- and out-of
focus areas, I proposed to add extra impostors that introduce less blurring and in turn cre-
ate a transition region.

To do this effect, you simply needed to create a copy of both your near and far impostors
and do a few modifications. The first change needed was to offset the impostor’s depth by
a small value, thus creating a transition region. Creating a new variable to contain this off-
set should lead you to the following vertex shader code:

float4x4 view_proj_matrix;
float Near_Dist;
float viewport_inv_width;
float viewport_inv_height;
float Near_Dist2;
struct VS_OUTPUT 
{

float4 Pos: POSITION;
float2 texCoord: TEXCOORD0;

};
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VS_OUTPUT vs_main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, Near_Dist+Near_Dist2, 1);

// Texture coordinates are setup so that the full texture
// is mapped completeley onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x +viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y +viewport_inv_height);

return Out;
}

In addition, you needed to ensure that the transition impostors did not apply a full blur
to the screen. The easiest way to do this is by enabling alpha blending on your impostor.
To do this, set the following render states:

ALPHABLENDENABLE = TRUE

BLENDOP = ADD

SRCBLEND = SRCALPHA

DESCBLEND = INVSRCALPHA

Finally, you needed to adjust the pixel shader so the alpha output was not equal to 1, or
else alpha blending would have been pointless. The resulting pixel shader code is the fol-
lowing:

sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

return float4(tex2D(Texture0,texCoord).rgb,0.6);
}

With those modifications, your depth of field effect
should now have a smoother transition, as shown in
Figure D.5. If you need to make the transition even
smoother, you may add extra offset impostors as
needed. The complete solution for this exercise can
be found on the CD-ROM’s source code directory
for this chapter as shader_ex1.rfx.
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Exercise 2: Using a Lookup Texture
For this exercise, you were invited to modify the alpha channel DOF effect to make use of
a lookup texture. The lookup texture is intended to contain the results of the depth-to-
focus equation so you do not have to pay the processing cost for each pixel of each object
in your scene.

The first step with this exercise is to create this lookup texture. Generally, you’d generate
it offline and use it within your shader. However, for this exercise, you will create it as a
separate pass within your effect. The first step is to create a new render target to contain
the lookup texture and set up a new render pass. Because the function is static, you will
need to make sure your render target is of a constant size, say 512 × 1.

To generate the lookup texture, simply use the same shader you used in the past to copy
renderable textures. Because the render target is intended to represent a depth lookup, this
means your x texture coordinate will essentially represent the depth to input in your func-
tion. The resulting pixel shader for the process is the following:

float Near_Dist;
float Far_Dist;
float Near_Range;
float Far_Range;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float Depth = texCoord.x;
float Blur = max(clamp(0,1, 1 - (Depth-Near_Dist)/Near_Range),

clamp(0,1, (Depth-(Far_Dist-Far_Range))/Far_Range));

return Blur;
}

Figure D.6 illustrates a sample output of what
the lookup texture may look like once generated.

With your lookup created, all you need to do is
add this lookup texture to each pass that renders
objects to the scene, and use this texture instead
of computing the blurring factor manually. The
resulting pixel shader code for the object render-
ing passes is the following:

float Far_Dist;
float Near_Range;
float Far_Range;
float Near_Dist;
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sampler Texture0;
sampler Texture1;
float4 ps_main(

float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0,
float1 Depth: TEXCOORD1) : COLOR0

{
//  Output object color and blurring factor from our previously
//  generated lookup texture
return float4(tex2D(Texture0,inTxr1).rgb,tex1D(Texture1,Depth).a);

}

The resulting output from this shader is shown in
Figure D.7. As usual, you can also find the com-
plete solution to this exercise in the CD-ROM’s
source code directory for this chapter as
shader_ex2.rfx.

Exercise 3: Using Intermediate Blur Textures 
to Create a Smoother Transition
In this exercise, I invited you to improve upon the two-pass shader developed in Chapter
6 and take advantage of intermediate blurring results to create a smoother transition
between the in- and out-of-focus regions. The first task required to accomplish this is to
capture the intermediate blurring result and store it in a new render target so you may use
it in the shader.

To perform this, create a new renderable texture as with the other blur textures. You must
then modify one of the blurring passes, say Blur_2, to render to this new renderable tex-
ture, and then make sure to use this render target in the following pass. This ensures that
this texture only gets written to once, and you can use the intermediate result in the final
blending pass.
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The final step required to make this new shader, reality is to change the present pass to
combine not only the regular blurred texture, but also the intermediate blur. To do this,
you may want to use the lerp function to interpolate between all three textures presented
to this shader. The following is an example of what your final pixel shader may look like:

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample and decode our depth value
float4 DepthValue = tex2D(Texture2,texCoord);
float Depth = DepthValue.r + DepthValue.g/127

+ DepthValue.b/(127*127);

// Sample our regular and blurred scene
float4 BlurColor = tex2D(Texture1,texCoord);
float4 BlurColorInt = tex2D(Texture3,texCoord);
float4 SceneColor = tex2D(Texture0,texCoord);

// Use the defined ranges to determine the proper
// combination of both render targets based on
// the distance.
float Blur = max(clamp(0,1, 1 - (Depth-Near_Dist)/Near_Range),

clamp(0,1, (Depth-(Far_Dist-Far_Range))/Far_Range));

return lerp(SceneColor,
lerp(BlurColor,BlurColorInt,clamp(0,1,Blur*2)),Blur);

}

Figure D.8 illustrates the final rendering output
for this shader. You can also find the complete
solution to this exercise on the CD-ROM as
shader_ex3.rfx in this chapter’s source code direc-
tory.
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Chapter 7
Exercise 1: Your Own Refraction Shader
In this exercise, you were invited to implement a full-blown shader performing simple
refraction by using the built-in refract HLSL function. You were invited to develop this
shader on your own using your own creativity and experience.

To start with this exercise, you need a base shader that includes both a background and a
teapot object. You can then use the basic shader developed in Chapter 6. To compute
refraction, you need to determine the view direction for each vertex in your model. Using
the view_position variable, you can deduce the view direction by subtracting the vertex
position by the view_position. After this direction is computed, it can by passed to the pixel
shader so that the refraction can be computed in a per-pixel manner. This should yield the
following vertex shader code:

float4 view_position;
float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos:    POSITION;
float3 Normal: TEXCOORD0;
float3 View:   TEXCOORD1;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL)
{

VS_OUTPUT Out;

// Compute the projected position and send out the normal
Out.Pos = mul(view_proj_matrix, inPos);
Out.Normal = normalize(inNormal);

// Determine the view direction (i.e: eye vector) for our
// refraction calculations
Out.View = normalize(view_position-inPos);
return Out;

}
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On the pixel shader end, you should be receiving both the interpolated surface normal
and view vector. Using those two vectors, you can compute the refracted view direction by
using the refract function. To render the final teapot color, you need to use the refracted
vector to look up into the environment cubemap, as done with the Environment pass. The
final pixel shader code is as follows:

float indexOfRefractionRatio;
sampler Environment;
float4 ps_main(float3 inNormal: TEXCOORD0, float3 inView: TEXCOORD1) : COLOR
{

// Make sure all incoming vectors are normalized
inNormal = normalize(inNormal);
inView = normalize(inView);

// Refraction texture lookup
float3 refrVect = refract(-inView,inNormal,indexOfRefractionRatio).xyz;
float4 refraction = texCUBE(Environment,refrVect);

// Output refracted color
return refraction;

}

With these modifications, your refraction
should give a result similar to the one shown in
Figure D.9. This shader is included on the CD-
ROM’s source code folder for this chapter as
shader_ex1.rfx.
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Exercise 2: Making It More Lively
In this exercise, you were invited to improve upon the heat impostor shader developed in
Chapter 7. To do this, it was suggest that you sample the distortion texture at two separate
offsets and combine the results. To do so, you simply need to sample the distortion tex-
ture a second time, using a different set of time variables and offsets.

Once both distortion textures have been sampled, the results can be combined together
before they are scaled and offset. With these changes, the pixel shader for the code should
look as follows:

float OffsetScale;
float time_0_1;
sampler Texture0;
sampler Texture1;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read and scale the distortion offsets
float2 offset = tex3D(Texture1,

float3(8*texCoord.x,8*texCoord.y+2*time_0_1,time_0_1)).xy;
float2 offset2 = tex3D(Texture1,

float3(4*texCoord.y,4*texCoord.x+time_0_1,2*time_0_1)).xy;

// Combine, offset and scale both distortion values
offset = ((offset+offset2)-1.0)*OffsetScale;

return tex2D(Texture0,texCoord+offset);
}

With these modifications described above, your
preview window should give a result similar to the
one shown in Figure D.10. This shader is included
on the CD-ROM as shader_ex2.rfx.
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Chapter 8
Exercise 1: Using a Big Filter
In this exercise, you were asked to modify the glow shader to use the 49-sample Gauss 
filter on the glow HDR shader developed in Chapter 8. The idea is to show that you can
use a more complex blur filter with fewer passes to accomplish the same task.

The solution to this exercise is simple. You need to go through every glow blur pass with
a pixel shader that does the 49-sample Gauss filter. The pixel shader code needed for this
is shown in the following:

float viewport_inv_width;
float viewport_inv_height;
sampler Texture0;
const float4 samples[7] = {

-3.0,  0.0,  0,  1.0/64.0,
-2.0,  0.0,  0,  6.0/64.0,
-1.0,  0.0,  0,  15.0/64.0,
0.0,   0.0,  0,  20.0/64.0,
1.0,   0.0,  0,  15.0/64.0,
2.0,   0.0,  0,  6.0/64.0,
3.0,   0.0,  0,  1.0/64.0

};

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col = float4(0,0,0,0);

// Sample and output the averaged color
for(int i=0;i<7;i++)

col += samples[i].w*tex2D(Texture0,texCoord+
float2(samples[i].x*viewport_inv_width,

samples[i].y*viewport_inv_height));
return col;

}

Keep in mind that because of the complexity of the shader, fewer passes are needed to do
the same job. You also need to remember that the pixel shader shown is a Gauss shader
implemented in a separated form. This means for that each blur pass, you need to do an
actual horizontal and vertical pass to complete the blur.
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With these modifications, you will get a render-
ing result as shown in Figure D.11. As you can see,
the results are very similar to the previous shader
developed in Chapter 8. For reference, the com-
plete solution to this exercise has been included
on the CD-ROM as shader_ex1.rfx in the direc-
tory for Chapter 8.

Exercise 2: Streaking on Today’s Hardware
In Chapter 8, I demonstrated how high dynamic range can be reproduced without the need
for floating-point textures by modifying the glow, or bloom, shader. For this exercise, you
were asked to apply the same process to the streak shader developed in Chapter 8.

The solution to this exercise is simple. The streaking part of the shader is in essence the
same; the only modifications needed are to the object rendering pass, which needs to con-
vert the brightness of pixels into a color+alpha value. The pixel shader code for this is the
same as the one developed for the glare shader and is as follows:

float Exposure_Level;
sampler Environment;
float4 ps_main(float3 dir: TEXCOORD0) : COLOR
{

float4 color = texCUBE(Environment, dir);
return float4(color.rgb, ((1.0+(color.a*64.0))*Exposure_Level)/64.0);

}
You also need to make the equivalent changes to the final pass pixel shader, which
should give the following pixel shader code:
float Glow_Factor;
sampler Texture0;
sampler Texture1;
sampler Texture2;
sampler Texture3;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read in streak colors
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float4 col1 = tex2D(Texture0,texCoord);
float4 col2 = tex2D(Texture1,texCoord);
float4 col3 = tex2D(Texture2,texCoord);
float4 col4 = tex2D(Texture3,texCoord);
// Combine 4 streak directions
return

min(1.0,
float4((col1.xyz)*(col1.a*64.0)*Glow_Factor,0.20) +
float4((col2.xyz)*(col2.a*64.0)*Glow_Factor,0.20) +
float4((col3.xyz)*(col3.a*64.0)*Glow_Factor,0.20) +
float4((col4.xyz)*(col4.a*64.0)*Glow_Factor,0.20)
);

}

The rendering result for this exercise is shown in
Figure D.12. The solution is included on the CD-
ROM as shader_ex2.rfx in this chapter’s source
code directory.

Chapter 9
Exercise 1: Directional Lights
For this exercise, you were asked to take the per-vertex point light shader developed in
Chapter 9 and adapt it to make use of a directional light. To accomplish this, you need to
make a few minor changes to the RenderMonkey workspace and vertex shader.

To start off, you need to modify the light parameters to change the light position to a
direction because directional lights have no position. To complement this, the changes
required to the vertex shader are fairly simple. The first modification is to remove the light
direction calculation and use the direction supplied in the constant variable. The second
change to apply to the vertex shader is to remove the distance-based attenuation because
directional light intensities are not distance dependent. What would be the point because
there is no position to compute a distance from?
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With these modifications, you should have the following vertex shader code:

float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Direction;
float4 Light1_Attenuation;
float4 Light1_Color;
float4 view_position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_Dir(float3 VertPos, float3 VertNorm, float3 LightDir,
float4 LightColor, float3 EyeDir)

{
// Compute half vector
float3 HalfVect = normalize(LightDir-EyeDir);

// Specular
float SpecularAttn =  max(0,pow(  dot(VertNorm, HalfVect),32));

// Diffuse
float AngleAttn = max(0, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * (SpecularAttn+AngleAttn);

}

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color

Exercise Solutions 423

TEAM LinG - Live, Informative, Non-cost and Genuine !



float4 Color = Light_Ambient;

// Determine the eye vector
float3 EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);

// Compute light contribution
Color += Light_Dir(inPos, inNormal, Light1_Direction,

Light1_Color, EyeVector);

// Output Final Color
Out.Color = Color;

return Out;
}

The rendering result for this exercise is shown in
Figure D.13. The solution is included on the CD-
ROM as shader_ex1.rfx in this chapter’s source
code folder.

Exercise 2: Animating Lights
For this exercise, you were asked to take the point light shader developed in Chapter 9 and
to modify it so the light’s position would be animated. Creating such an animation can be
done through the use of the time_0_2PI built-in variable. The more complex task is to
determine how the light is animated. Assuming you want the light to be animated along
a circle in the XZ plane with a radius of 60, the following would accomplish this:

Light1_Position = float3(60*sin(time_0_2PI),0,60*cos(time_0_2PI));
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Keep in mind that this is one possible solution to the problem of animating the lights. So
by adding the built-in variable to your workspace and changing the vertex shader code to
procedurally generate the light’s position, you should have the following vertex shader
code:

float time_0_1;
float4 Light1_Attenuation;
float4 view_position;
float4x4 inv_view_matrix;
float4x4 view_matrix;
float4x4 view_proj_matrix;
float4 Light_Ambient;
float4 Light1_Color;
float time_0_2PI;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float2 Color:    COLOR0;

};

float4 Light_Point(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation, float3 EyeDir)

{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute half vector
float3 HalfVect = normalize(LightDir-EyeDir);

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist +
LightAttenuation.z * Dist * Dist ));

// Specular
float SpecularAttn =  max(0,pow(  dot(VertNorm, HalfVect),32));
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// Diffuse
float AngleAttn = max(0, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * DistAttn * (SpecularAttn+AngleAttn);

}

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Output the ambient color
float4 Color = Light_Ambient;

// Determine the eye vector
float3 EyeVector = -normalize(mul(inv_view_matrix,float4(0,0,10,1))+inPos);

// Determine Light_Position
float3 Light1_Position = float3(0,0,0);
Light1_Position.x = 60*sin(time_0_2PI);
Light1_Position.z = 60*cos(time_0_2PI);

// Animate color
float4 color = Light1_Color;
color.x = time_0_1;
color.y = 1-time_0_1;

// Compute light contribution
Color += Light_Point(inPos, inNormal, Light1_Position,

color, Light1_Attenuation, EyeVector);

// Output Final Color
Out.Color = Color;

return Out;
}
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The rendering result for this exercise is shown in
Figure D.14. The solution is included on the CD-
ROM as shader_ex2.rfx in this chapter’s source
code folder.

Chapter 10
Exercise 1: Directional Lights
For this exercise, you were invited to take the per-pixel point light shader and modify it to
support a directional light instead of a point light. Although the idea is the same as the
first exercise in Chapter 9, the way of achieving the result is slightly different because of
the nature of per-pixel lighting.

The effect workspace itself does not need any changes; the only modifications required
will be on the vertex and pixel shader. In regards to the vertex shader, because the direc-
tional light has a direction and no position, you need to change the code that calculates
the tangent space direction vector to use a static direction instead of computing this value
from a light position. The second change required is to remove the distance-based atten-
uation calculation because there is no distance attenuation with a directional light.

With those modifications in place, your resulting vertex shader code should be as follows:

float4 Light1_Attenuation;
float4 view_position;
float4x4 view_proj_matrix;
float4x4 inv_view_matrix;
float4x4 view_matrix;
float4 Light1_Color;
float4 Light_Ambient;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
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float4 LightDir: TEXCOORD1;
float3 HalfVect: TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float3 inTangent:TANGENT, float3 inBinormal:BINORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Determine the distance from the light to the vertex and the direction
float4 LightDir = float4(0,0,0,1);
LightDir.xyz = mul(inv_view_matrix,float3(0.7,00,-0.7));

// Determine the eye vector
float3 EyeVector = normalize(view_position-inPos);

// Transform to tangent space and output
// half vector and light direction
float3x3 TangentSpace;
TangentSpace[0] = inTangent;
TangentSpace[1] = inBinormal;
TangentSpace[2] = inNormal;
Out.HalfVect = mul(TangentSpace,normalize(LightDir.xyz+EyeVector));
Out.LightDir = float4(mul(TangentSpace,LightDir.xyz),LightDir.w);

return Out;
}

On the pixel shader end, the only change required is to remove the distance attenuation
from the final lighting calculations. With this change, the resulting shader should be as
follows:

float4 Light1_Color;
sampler Texture0;
sampler Bump;
float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
{
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// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),16);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * (SpecularAttn+DiffuseAttn);

}

float4 ps_main(float2 inTxr:TEXCOORD0,float4 LightDir:TEXCOORD1,
float3 HalfVect:TEXCOORD2) : COLOR

{
// Read bump and influence the normal
float3 normal = tex2D(Bump,inTxr) * 2 - 1;

// Simply route the vertex color to the output
return tex2D(Texture0,inTxr)*

(0.15+Light_Point(normal,HalfVect,LightDir,Light1_Color));
}

The rendering result for this exercise is shown in
Figure D.15. The solution is included in this
chapter’s source code directory on the CD-ROM
as shader_ex1.rfx.

Exercise 2: Multiple Lights
For this exercise, you were asked to add an extra point light to the shader developed in
Chapter 10. Because lighting information is passed to the pixel shader for evaluation, the
output structure within the vertex shader will need to be modified to pass two sets of
lighting vectors. The following shows the structure with the added outputs:

struct VS_OUTPUT
{
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float4 Pos:        POSITION;
float2 TexCoord: TEXCOORD0;
float4 LightDir1:  TEXCOORD1;
float3 HalfVect1:  TEXCOORD2;
float4 LightDir2:  TEXCOORD3;
float3 HalfVect2:  TEXCOORD4;

};

On the vertex shader side, you simply need to replicate the code that generates the tangent
space light direction and half vector for the second light. The following shows the result-
ing vertex shader code:

float4 Light1_Attenuation;
float4 view_position;
float4x4 view_proj_matrix;
float4x4 inv_view_matrix;
float4x4 view_matrix;
float4 Light1_Color;
float4 Light_Ambient;
struct VS_OUTPUT
{

float4 Pos:        POSITION;
float2 TexCoord:   TEXCOORD0;
float4 LightDir1:  TEXCOORD1;
float3 HalfVect1:  TEXCOORD2;
float4 LightDir2:  TEXCOORD3;
float3 HalfVect2:  TEXCOORD4;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float3 inTangent:TANGENT, float3 inBinormal:BINORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Transform to tangent space and output
// half vector and light direction
float3x3 TangentSpace;
TangentSpace[0] = inTangent;
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TangentSpace[1] = inBinormal;
TangentSpace[2] = inNormal;

// Determine the eye vector
float3 EyeVector = normalize(view_position-inPos);

// — Light 1 —
float4 LightDir;
LightDir.xyz = mul(inv_view_matrix,float3(80,00,-80)) - inPos;
float  Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the per-vertex distance based attenuation
LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +

Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

Out.HalfVect1 = mul(TangentSpace,normalize(LightDir.xyz+EyeVector));
Out.LightDir1 = float4(mul(TangentSpace,LightDir.xyz),LightDir.w);

// — Light 2 —
LightDir.xyz = mul(inv_view_matrix,float3(-80,00,-80)) - inPos;
Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the per-vertex distance based attenuation
LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +

Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

Out.HalfVect2 = mul(TangentSpace,normalize(LightDir.xyz+EyeVector));
Out.LightDir2 = float4(mul(TangentSpace,LightDir.xyz),LightDir.w);

return Out;
}

In the pixel shader, you need to add the input parameters for the second set of lighting
vectors. Beyond this, the only modification needed to the pixel shader is to call the
Light_Point function a second time and add the result to the previously calculated lighting
value. The resulting pixel shader code is as follows:

float4 Light1_Color;
float4 Light2_Color;
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sampler Texture0;
sampler Bump;
float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,

float4 LightColor)
{

// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),16);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * LightDir.w * (SpecularAttn+DiffuseAttn);

}

float4 ps_main(float2 inTxr:TEXCOORD0,
float4 LightDir1:TEXCOORD1,float3 HalfVect1:TEXCOORD2,
float4 LightDir2:TEXCOORD3,float3 HalfVect2:TEXCOORD4) : COLOR

{
// Read bump and influence the normal
float3 normal = tex2D(Bump,inTxr) * 2 - 1;

// Simply route the vertex color to the output
return tex2D(Texture0,inTxr)*(0.15+

Light_Point(normal,HalfVect1,LightDir1,Light1_Color)+
Light_Point(normal,HalfVect2,LightDir2,Light2_Color));

}

The rendering result for this exercise is shown in
Figure D.16. The solution is included on the CD-
ROM as shader_ex2.rfx in this chapter’s source
code directory.
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Chapter 11
Exercise 1: Doing It All Per-Pixel
For this exercise, you were asked to take the vertex-based reflection/refraction shader and
convert it so that it would operate per-pixel. This task simply involves computing the
lighting components within the pixel shader instead of the vertex shader. For this to work,
you need to ensure that all the needed components, such as surface normal and eye vec-
tor, are passed to the pixel shader, as you have done several times already. The following
shader shows how this can be done:

float4x4 view_proj_matrix;
float4 view_position;
struct VS_OUTPUT
{

float4 Pos:      POSITION;
float2 TexCoord: TEXCOORD0;
float3 viewVec:  TEXCOORD1;
float3 Normal:   TEXCOORD2;

};

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

Out.viewVec = view_position - inPos;
Out.Normal = inNormal;

return Out;
}

On the pixel shader side, the code is similar to the vertex shader in the first version, tak-
ing in the interpolated vertex lighting components and computing the final reflection/
refraction values. The following is the resulting pixel shader:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORD0,float3 viewVec: TEXCOORD1,

float3 inNormal: TEXCOORD2) : COLOR
{
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viewVec = normalize(viewVec);

// Compute reflection
float3 inReflect = reflect(-viewVec,inNormal);

// Compute the reflection vector using Snell’s law
// the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r  * sin(theta_r)

// sin(theta_i)
float cosine = dot(viewVec, inNormal);
float sine = sqrt(1 - cosine * cosine);

// sin(theta_r)
float sine2 = saturate(1.14 * sine);
float cosine2 = sqrt(1 - sine2 * sine2);

// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction
float3 x = -inNormal;
float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
float3 inRefract = x * cosine2 + y * sine2;

// Output texture color with reflection map
return sine * texCUBE(EnvMap,inReflect) +

((1 - sine2) * texCUBE(EnvMap,inRefract) + 0.4)
* tex2D(Wood,inTxr);

}

The rendering result for this exercise is shown in
Figure D.17. The solution is included in this chap-
ter’s source code folder on the CD-ROM as
shader_ex1.rfx.
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Exercise 2: Color-Based Refraction
For this exercise, you were asked to take a basic refraction shader and expand it to take
into account the variation of the index of refraction, or IOR, based on the color of light.
Because it is prohibitive to compute the actual wavelength for a particular pixel, the sim-
plest approach is to consider each of the three color components separately and determine
its own refraction.

The process to do this is similar to the regular refraction shader, with the exception that
you need to sample your refraction texture three times, once for each color component.
Each sample is based on a slightly different refraction index.

The following pixel shader code illustrates how this can easily be done:

sampler Wood;
sampler EnvMap;
float4 ps_main(float2 inTxr: TEXCOORD0,float3 viewVec: TEXCOORD1,

float3 inNormal: TEXCOORD2) : COLOR
{

viewVec = normalize(viewVec);

// Compute reflection
float3 inReflect = reflect(-viewVec,inNormal);

// Compute the reflection vector using Snell’s law
// the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r  * sin(theta_r)

// sin(theta_i)
float cosine = dot(viewVec, inNormal);
float sine = sqrt(1 - cosine * cosine);

// sin(theta_r)
float sine2;
float cosine2;

// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction
float3 x = -inNormal;
float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));

// Determine refraction for each color component
float4 refr = float4(0,0,0,1);
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// —- RED —-
sine2 = saturate(1.14 * sine);
cosine2 = sqrt(1 - sine2 * sine2);
refr.r = texCUBE(EnvMap,x * cosine2 + y * sine2).r;

// —- GREEN —-
sine2 = saturate(1.18 * sine);
cosine2 = sqrt(1 - sine2 * sine2);
refr.g = texCUBE(EnvMap,x * cosine2 + y * sine2).g;

// —- BLUE —-
sine2 = saturate(1.20 * sine);
cosine2 = sqrt(1 - sine2 * sine2);
refr.b = texCUBE(EnvMap,x * cosine2 + y * sine2).b;

// Output texture color with reflection map
return sine * texCUBE(EnvMap,inReflect) +

((1 - sine2) * refr + 0.2);
}

The rendering result for this exercise is shown in
Figure D.18. The solution is included on the CD-
ROM as shader_ex2.rfx in this chapter’s source
code folder.
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Chapter 12
Exercise 1: Texture Lookups
For this exercise, you were asked to take the Minneart-based velvet shader developed in
Chapter 12 and convert it to take advantage of a texture lookup instead of computing the
lighting result for each pixel. Although the texture lookup part is easy, determining the
lookup texture may sometimes prove difficult.

One solution is to approximate the results by
using a gradient within your image editing pro-
gram, such as Adobe Photoshop. This works well
for simple functions but may not work for more
complex ones. The other solution is to set up a
simple screen shader that will render your texture
in function of screen coordinates.

Doing so in the case of our velvet shader gives the
lookup texture shown in Figure D.19.

After you have a lookup texture ready, setting up
the shader is simple. Instead of evaluating the full
Minneart equation, compute the two angles from
your lighting vectors and use them as texture
coordinates to perform the lookup. Doing so
should yield the following pixel shader code:

float Velvet_Exponent;
float4 Light1_Color;
sampler Texture0;
float4 Light_Velvet(float3 Normal, float3 EyeVect, float3 LightDir,

float4 LightColor)
{

// Compute both the light and eye angle about the
// surface normal
float l = dot(Normal, LightDir);
float e = dot(Normal, EyeVect);

// Compute final lighting. This is simply a matter of looking
// up our precomputed texture with the light and eye vectors
return LightColor * 0.2+0.8*tex2D(Texture0,float2(l,e));

}

float4 ps_main(float3 inNormal:TEXCOORD0, float3 LightDir:TEXCOORD1,
float3 EyeVect:TEXCOORD2) : COLOR
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{
return Light_Velvet(inNormal,-normalize(EyeVect),

normalize(LightDir),Light1_Color);
}

The rendering result for this exercise is shown in
Figure D.20. The solution is included on the CD-
ROM as shader_ex1.rfx in this chapter’s source
code folder.

Exercise 2: Multiple BRDFs
For this exercise, you were asked to take the
Oren-Nayer BRDF shader developed within
Chapter 12 and use it to render felt, skin, and
corduroy. For this exercise, no coding is
involved, and all you need to do is look up the
proper rho, sigma, and Kd coefficients from
Table 12.1 and use the equation in Figure 12.6
to determine the proper A, B, and rho_pi factors.

For felt, once calculated, your coefficients
should be as follows: A=0.83, B=0.28, and
rho_pi=0.116. With those values input into the
Oren-Nayer shader, the rendering should look
similar to the one in Figure D.21.
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Figure D.21  Rendered output for the felt
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For human skin, once calculated, your coefficients should be as follows: A=0.748, B=0.345,
and rho_pi=0.06. With those values input into the shader, the rendering should look sim-
ilar to the one in Figure D.22.

And finally, with corduroy, once calculated, your coefficients should be as follows: A=0.7,
B=0.38, and rho_pi=0.13. With those values input into the shader, the rendering should
look similar to the one in Figure D.23.

Chapter 13
Exercise 1: Animating Clouds
For this exercise, you were asked to take the Perlin noise cloud shader developed during
Chapter 13 and expand it to animate the clouds. The first point to consider is taking
advantage of the 3D nature of the noise texture to animate the clouds. Animating along
this axis causes the clouds to appear as they are evolving. This can simply be done by using
the built-in time_0_1 variable for the Z component of the noise texture.

In addition to making the clouds progress over time, you may want to make the clouds
move over time. Using the same variable, you can offset the X and Y texture components
to create the illusion of movement. One thing to keep in mind is that the speed at which
time_0_1 evolves is set within the RenderMonkey properties and may need to be adjusted.
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The final pixel shader code for the animating clouds is as follows:

float time_0_1;
float persistance;
sampler Texture0;
float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample the nouse texture based on time
float3 txr = float3(texCoord+time_0_1,time_0_1);

// Combine 2 octaves of noise together.
// Two octaves are sufficient for cloud rendering
float final_noise = 0;
for(int i=0;i<2;i++)

final_noise +=(1.0/pow(persistance,i))*
(tex3D(Texture0, txr*pow(2,i))*2-1);

// Remove the sign from the noise and prep
// it for cloud rendering
return ((final_noise+0.15)*2);

}

With this pixel shader, the results look similar to the cloud shader developed in Chapter
13 but will animate over time. Figure D.24 shows several snapshots over time of the ani-
mating clouds. This shader can be found in this chapter’s source code folder on the 
CD-ROM as shader_ex1.rfx.
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Exercise 2: Rendering Strata
For this exercise, you were asked to use Perlin noise to render a strata-type material. Strata
is a rock in which different materials of different color are layered. The set of strata color
layers is already provided within the StrataSpline.dds texture.

Because the material is layered in one direction and the color texture is supplied as a 1D
texture, you need to pick an axis of the object’s vertex coordinates and use them to look
up the color texture. Because such material is layered and slightly turbulent, you can then
use three octaves of the Perlin noise to offset your lookup into the strata texture. Doing so
yields the following pixel shader code:

float4 marble_color;
float persistance;
sampler Texture0;
sampler Texture1;
float4 ps_main(float3 txr: TEXCOORD0) : COLOR
{

// Combine 3 octaves of noise together.
float final_noise = 0;
for(int i=0;i<3;i++)

final_noise += ((1.0/pow(persistance,i))*
((tex3D(Texture0, txr*pow(2,i))*2)-1));

// Take the Z-coordinate and add some noise before
// looking into the color map texture
return tex1D(Texture1,txr.z + final_noise.x/15);

}

After it’s compiled, the shader should look similar
to the rendering shown in Figure D.25. If you need
to make the transition even smoother, you may
add extra offset imposters as needed. The final
shader is included on the CD-ROM as
shader_ex2.rfx in this chapter’s source code folder.
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Chapter 14
Exercise 1: Depth-Based Outline
For this exercise, you were asked to develop a new outline rendering shader using depth,
as described in Chapter 14. This shader operates very similarly to the one developed using
the edge detection algorithm in this chapter. To accomplish this task, you can start using
the shader developed in Chapter 14, but you will need to change the object rendering pass
so that the shaders output the object depth instead of a solid color.

To perform this, you need to modify the vertex shader so that it outputs the depth of the
object for each vertex. This can easily be done by taking the Z component of the projected
position for the vertex. The following is the resulting vertex shader:

float4x4 view_proj_matrix;
float depthScale;
struct VS_OUTPUT
{

float4 Pos: POSITION;
float texCoord: TEXCOORD;

};

VS_OUTPUT main(float4 Pos: POSITION)
{

VS_OUTPUT Out;

// Transform vertex position
Out.Pos = mul(view_proj_matrix, Pos);

// Pass the scaled depth value as a texture coordinate
Out.texCoord = depthScale * mul(view_proj_matrix, Pos).z;

return Out;
}

On the pixel shader side, simply take the depth that was passed as a texture coordinate and
output it as a color. The following pixel shader accomplishes this task:

float4 main(float depth: TEXCOORD) : COLOR
{

// Simply output the depth to the texture as a color
return depth;

}

The rest of the shader is essentially the same. The Sobel edge detection filter used in Chap-
ter 14 can also be used to detect discontinuities within the depth values and should give
appropriate results. However, I did mention that to create smoother edges, you may want
to apply a blurring pass on the result of the edge detection.
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To do this, you need to add an extra pass that implements a blur filter. Any good quality
blur filter will do. The following is an example of pixel shader using a 12 tap filter:

float hardness;
float AA_SampleDist;
sampler EdgeMap;
const float2 samples[12] = {

-0.326212, -0.405805,
-0.840144, -0.073580,
-0.695914,  0.457137,
-0.203345,  0.620716,
0.962340, -0.194983,
0.473434, -0.480026,
0.519456,  0.767022,
0.185461, -0.893124,
0.507431,  0.064425,
0.896420,  0.412458,

-0.321940, -0.932615,
-0.791559, -0.597705,

};

float4 main(float2 texCoord: TEXCOORD) : COLOR
{

// Apply a simple blur filter to get rid of aliasing and
// get a wider spread of the edges and a softer image.
float sum = tex2D(EdgeMap, texCoord);
for (int i = 0; i < 12; i++){

sum += tex2D(EdgeMap, texCoord + AA_SampleDist * samples[i]);
}

return 1 - hardness * sum;
}

After it’s compiled and executed, this shader should
give results similar to the one shown in Figure D.26.
For reference, the shader is included on the CD-ROM
as shader_ex1.rfx in the directory for Chapter 14.
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Exercise 2: Silhouette and Toon Shading
For this exercise, you were asked to combine the depth-based silhouette rendering along
with the toon shader developed in Chapter 14. The task itself is trivial because it only
involves combining rendering passes previously
developed. The one thing you want to keep in
mind is that you need to render your object
before you render the outline so you can overlay
the outline to the geometry. To do this, you need
to adjust the render states at the blurring pass so
that it only renders where an edge is present, so as
not to overwrite the whole object.

With those modifications, your toon shader will
look similar to that shown in Figure D.27. The
shader is included on the CD-ROM as
shader_ex2.rfx in this chapter’s source code
folder.

Chapter 15
Exercise 1: Round Fog
For this exercise, you were asked to take advantage of the hardware-accelerated fog sup-
port to implement a twist on the regular fog approach. To prove you can use the hardware
to your advantage, you have been asked to implement fog in a circular manner around the
center of the screen, thus creating a dream-like illusion.

This shader can easily be developed by starting from the height fog shader developed in
Chapter 15. With this shader, you need to change its vertex shader to compute the fog
based on a circle around the screen space coordinates of your geometry. This can easily be
done by taking the length of the X,Y screen space coordinates. Keep in mind that the fog
values are reversed and you will need to negate the result.

Applying this change yields the following final vertex shader code:

float4x4 view_proj_matrix;
struct VS_OUTPUT
{

float4 Pos:     POSITION;
float2 Txr1:    TEXCOORD0;
float1 Fog:     FOG;

};

VS_OUTPUT vs_main(
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float4 inPos: POSITION,
float2 Txr1: TEXCOORD0)

{
VS_OUTPUT Out;

float4 Pos = mul(view_proj_matrix, inPos);
Out.Pos = Pos;
Out.Txr1 = Txr1;

// Set the fog proportional to the Y height.
// With a vertex shader, the fog can be set to
// any value you wish.
Out.Fog = 1-sqrt(dot(Pos.xy/Pos.w,Pos.xy/Pos.w));

return Out;
}

Once completed and compiled, this shader should
yield a result similar to the one shown in Figure
D.28. The completed shader is included on the
CD-ROM as shader_ex1.rfx in the source directory
for Chapter 15.

Chapter 17
Exercise 1: Per-Pixel Spherical Harmonics
For this exercise, you were asked to develop a per-pixel spherical harmonics shader.
Because a per-vertex implementation has been created in Chapter 17, the process should
be straightforward starting from this shader.

The vertex shader for this task needs some significant changes because most of the com-
putations need to be done within the pixel shader. The vertex shader for this task will need
to determine the tangent space for each vertex. However, because the spherical harmon-
ics are represented in view-space, you will need to take your basis and transform it by
view_matrix to bring it into view-space.

Exercise Solutions 445

Figure D.28  Rendered output for our
round fog exercise.

TEAM LinG - Live, Informative, Non-cost and Genuine !



Beyond this, you simply need to transform the vertex position and send out all the results
to the pixel shader. Doing so yields the following vertex shader code:

float4x4 view_proj_matrix;
float4x4 view_matrix;
struct VS_OUTPUT
{

float4 Pos:       POSITION;
float4 Tex:       TEXCOORD0;
float3 Normal:    TEXCOORD1;
float3 Tangent:   TEXCOORD2;
float3 Binormal:  TEXCOORD3;

};

VS_OUTPUT vs_main(
float4 inPosition: POSITION,
float4 inNormal:   NORMAL,
float4 inTex:      TEXCOORD,
float4 inTangent:  TANGENT,
float4 inBinormal: BINORMAL )

{
VS_OUTPUT Out;

// Transform and project the position, also output
// the texture coordinate for this vertex
Out.Pos = mul(view_proj_matrix, inPosition);
Out.Tex = inTex;

// Rotate the basis vectors into view space
float4 nvector = float4(inNormal.x, inNormal.y, inNormal.z, 0.0);
float4 tvector = float4(inTangent.x, inTangent.y, inTangent.z, 0.0);
float4 bvector = float4(inBinormal.x, inBinormal.y, inBinormal.z, 0.0);

Out.Normal = mul(view_matrix, nvector);
Out.Tangent = mul(view_matrix, tvector);
Out.Binormal = mul(view_matrix, bvector);

return Out;
}
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The pixel shader will do most of the work for the effect. Initially, it needs to consider the
bumpmapping for the surface. To do so, you need to sample the bumpmap and bias the
values so they are signed. Because the bumpmap values define the surface normal in tan-
gent space but our lighting is done in view-space, you will then take the normal, tangent,
and bi-normal vectors generated within the vertex shader to rotate the normal into the
proper space. This can be done by combining the vectors into a matrix and transforming
your bumpmap normal by this matrix.

At this point, you have a normal vector pointing into the same space as the spherical har-
monic. Because we are dealing simply with diffuse lighting, we can use its value and trans-
form it by the spherical harmonic coefficients. The operation is the same as that done with
the vertex-based shader.

Of course, you then need to take the spherical harmonic lighting value and modulate it
with the object’s color. This yields the following pixel shader code:

float4x4 g_matrix;
float4x4 b_matrix;
float4x4 r_matrix;
sampler color_map;
sampler bump_map;
float4 main(

float4 inTex:       TEXCOORD0, 
float3 inNormal:    TEXCOORD1,
float3 inTangent:   TEXCOORD2,
float3 inBinormal:  TEXCOORD3 ) : COLOR

{
float4 col;
float3x3 rotation;
float3 normalbump;
float4 normal;

// Define the tangent space matrix for the light
rotation = float3x3(inTangent, inBinormal, inNormal);

// Get normal from bumpmap
normalbump = tex2D(bump_map, inTex) * 2.0 - 1.0;

// Transform normal into light space
normal = float4(mul(normalbump, rotation),1.0);
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// Evaluate spherical harmonic
col.r = dot(mul(r_matrix, normal), normal);
col.g = dot(mul(g_matrix, normal), normal);
col.b = dot(mul(b_matrix, normal), normal);
col.a = 1.0;

// Modulate with the texture color
return col * tex2D(color_map, inTex) * 2.0;

}

With those modifications, your object should
be lit as shown in Figure D.29. The shader is
included in this chapter’s source code folder on
the CD-ROM as shader_ex1.rfx.

Chapter 18
Exercise 1: Soft Shadow Mapping
For this exercise, you were asked to implement soft shadows by using the shadow map-
ping shader developed in Chapter 18. Although there are several approaches to this
shader, the simplest is to modify the shader to sample multiple shadow values and aver-
age the shadow contributions.

To do so, you need to sample the shadow map several times around the current position
and repeat the shadow operations. Remember to take advantage of vector operations to
optimize the process. After you have multiple shadow values, it is simply a matter of aver-
aging them and using this new value to determine the final shadow. The following pixel
shader does exactly this with four shadow samples:

float shadowBias;
float backProjectionCut;
float Ka;
float Kd;
float Ks;
float4 modelColor;
sampler ShadowMap;
sampler SpotLight;
float4 ps_main(

float3 inNormal: TEXCOORD0,
float3 lightVec: TEXCOORD1,
float3 viewVec:  TEXCOORD2,
float4 shadowCrd:TEXCOORD3) : COLOR

{
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Figure D.29  Rendered output for our
per-pixel spherical harmonics exercise.
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// Normalize the normal
inNormal = normalize(inNormal);

// Radial distance and normalize light vector
float depth = length(lightVec);
lightVec /= depth;

// Standard lighting
float diffuse = saturate(dot(lightVec, inNormal));
float specular = pow(saturate(

dot(reflect(-normalize(viewVec), inNormal), lightVec)),
16);

// The depth of the fragment closest to the light
float4 shadowMap;
float  offset = (2.0/1024.0)*shadowCrd.w;
shadowMap.x = tex2Dproj(ShadowMap, shadowCrd+float4(offset,0,0,0));
shadowMap.y = tex2Dproj(ShadowMap, shadowCrd+float4(-offset,0,0,0));
shadowMap.z = tex2Dproj(ShadowMap, shadowCrd+float4(0,offset,0,0));
shadowMap.w = tex2Dproj(ShadowMap, shadowCrd+float4(0,-offset,0,0));

// A spot image of the spotlight
float spotLight = tex2Dproj(SpotLight, shadowCrd);

// If the depth is larger than the stored depth, this fragment
// is not the closest to the light, that is we are in shadow.
// Otherwise, we’re lit. Add a bias to avoid precision issues.
float shadow;
shadow = (float)(depth < shadowMap.x + shadowBias)/4.0;
shadow += (float)(depth < shadowMap.y + shadowBias)/4.0;
shadow += (float)(depth < shadowMap.z + shadowBias)/4.0;
shadow += (float)(depth < shadowMap.w + shadowBias)/4.0;

// Modulate with spotlight image
float shadowval = spotLight*shadow;

// Shadow any light contribution except ambient
return Ka * platformColor +

(Kd * diffuse * platformColor + Ks * specular) * shadowval;
}
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Compiling and running this shader yields results
similar to those shown in Figure D.30. You can
find the complete version of this exercise in this
chapter’s source code folder on the CD-ROM as
shader_ex1.rfx.
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Figure D.30  Rendered output for our
soft shadow mapping exercise.
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451

Shader Library

appendix E

Throughout this book we have covered much ground and many different shader
techniques. Many of these techniques reuse the same segments of code and could
prove useful for other shaders you may develop in the future.

However, because the code is spread throughout this book, it may be difficult for you to
find that important piece of code that you need. To help you out, I have created this shader
library chapter, which takes all the important code from throughout the book and groups
it in one place, divided into categories, making your search even easier. Keep in mind that
the code in this chapter is meant as an example that you can reuse in your own shaders;
this implies that you might need to change variable names within the code to match your
needs.

Basic Components
This section covers the most basic tasks you might need to perform when rendering
objects, such as transforming and projecting an object.

Object Transformation and Projection
The most basic task you will need to do is to transform and project an object for render-
ing. The following code takes the vertex position of an object and transforms it into screen
space using the view_proj_matrix variable:

VS_OUTPUT vs_main( float4 inPos: POSITION )
{

VS_OUTPUT Out;
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// Output a transformed and projected vertex position
Out.Pos = mul(view_proj_matrix, inPos);

return Out;
}

Basic Texturing
Texturing is an important part of rendering realistic objects. The following code illustrates
how you can take the texture coordinates passed from the vertex shader to sample and use
the color of a texture within the pixel shader:

float4 ps_main(
float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0

) : COLOR0
{

//  Output the color taken from our texture
return tex2D(Texture0,inTxr1);

}

Color Modulation
In some situations, using a single texture simply isn’t enough. Sometimes you need to take
two textures or colors and modulate them together. Modulating two colors is simply a mat-
ter of multiplying both colors together. The following code shows how this can be done:

float4 ps_main(
float4 inDiffuse: COLOR0,
float2 inTxr1: TEXCOORD0,
float2 inTxr2: TEXCOORD1

) : COLOR0
{

//  Output constant color:
return tex2D(Texture0,inTxr1)*tex2D(Texture1,inTxr2);

}

Depth Encoding and Decoding
Whether you are doing depth of field or per-pixel volumetric fog, you need to take the
depth of an object and store it inside a texture for you to reuse. Unfortunately, until sup-
port for floating-point texture formats is more widespread, the use of eight bits of preci-
sion just isn’t enough. By the clever use of several eight-bit color components, you can
encode depth with more than enough precision for all your needs.
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The following pixel shader code takes care of encoding a floating-point depth value into
the color components of a fixed-point texture:

float4 ps_main(
float4 inDepth: TEXCOORD0

) : COLOR0
{

//  Output the depth as computed by
//  the vertex shader
float4 Depth;
Depth.w = 1.0;
Depth.x = floor(inDepth.x*127)/127;
Depth.y = floor((inDepth.x-Depth.x)*127*127)/127;
Depth.z = 0;

return Depth;
}

After you encode your depth inside a texture, you need to be able to decode this depth for
your use. The following pixel shader code fragment illustrates how this can be done:

// Sample and decode our depth value
float4 DepthValue = tex2D(Texture2,texCoord);
float Depth = DepthValue.x + DepthValue.y/127

+ DepthValue.z/(127*127);

Screen Effects
As you have seen throughout this book, many things can be done using screen effects.
Whether you are simply copying from one surface to another or applying a filter to an
image, you need to use screen effects. The following section covers some of the most com-
monly used techniques.

Rendering to a Full Screen Quad
When dealing with screen effects and render targets, you often need to render a texture
onto another flat surface. This is most commonly done when applying a filter to a texture
or simply copying from one surface to another. The process involves rendering using a full
screen quad and adjusting the texture coordinates so that the center of a texel coincides
with the center of a screen pixel. The following code does just that:

VS_OUTPUT vs_main(float4 Pos: POSITION){
VS_OUTPUT Out;
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// Simply output the position without transforming it
Out.Pos = float4(Pos.xy, 0, 1);

// Texture coordinates are set up so that the full texture
// is mapped completly onto the screen
Out.texCoord.x = 0.5 * (1 + Pos.x - viewport_inv_width);
Out.texCoord.y = 0.5 * (1 - Pos.y - viewport_inv_height);

return Out;
}

Color Matrix
One of the simplest forms of filtering operations is manipulating the colors in your image.
This enables you to render your scene in black and white or even sepia. Generalizing this
operation simply involves putting the color modification inside a matrix and multiplying
your colors by this matrix, just as the following code does:

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Read the source color
float4 col = tex2D(Texture0,  texCoord);

// Apply the matrix to the incoming color
return mul(color_filter,col);

}

Basic Filtering Pixel Shader
Most texture filtering operations involve sampling a texture at several different offsets and
combining the results based on specific weights. Because of this, it is simple to take advan-
tage of loops within the HLSL architecture to perform the filtering operation. The fol-
lowing code shows you how you can sample multiple texels from a texture and combine
the results:

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

float4 col = float4(0,0,0,0);

// Sample and output the box averaged colors
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for(int i=0;i<4;i++)
col += samples[i].w*tex2D(Texture0,texCoord+
float2(samples[i].x*viewport_inv_width,

samples[i].x*viewport_inv_height));
return col;

}

The next few sections illustrate some of the most commonly used filters overviewed
throughout this book.

Box Blur Filter
The following array shows how you can implement a simple box filter.

const float4 samples[4] = {
-1.0,  0.0,  0,  0.25,
1.0,  0.0,  0,  0.25,
0.0,  1.0,  0,  0.25,
0.0, -1.0,  0,  0.25

};

Gauss Blur Filter
Although the box blurring filter is simple to implement, its results aren’t as impressive.
One approach commonly used to improve the quality of the blur is to use a Gauss filter.
However, such filters can be prohibitive to implement; a 7 × 7 filter requires 49 samples to
be completed. On the bright side, such filters have a seperatable nature, meaning that you
can take a 7 × 7 filter and separate it into a horizontal and vertical pass, each requiring 7
samples. The following shows you the arrays for a 49-sample Gauss filter.

Horizontal pass:

const float4 samples[7] = {
-3.0,  0.0,  0,  1.0/64.0,
-2.0,  0.0,  0,  6.0/64.0,
-1.0,  0.0,  0,  15.0/64.0,
0.0,  0.0,   0,  20.0/64.0,
1.0,  0.0,   0,  15.0/64.0,
2.0,  0.0,   0,  6.0/64.0,
3.0,  0.0,   0,  1.0/64.0

};
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Vertical pass:

const float4 samples[7] = {
0.0, -3.0,  0,  1.0/64.0,
0.0, -2.0,  0,  6.0/64.0,
0.0, -1.0,  0,  15.0/64.0,
0.0,  0.0,  0,  20.0/64.0,
0.0,  1.0,  0,  15.0/64.0,
0.0,  2.0,  0,  6.0/64.0,
0.0,  3.0,  0,  1.0/64.0

};

Edge Detection Filter
Edge detection is a very powerful technique that can be used in basic image filtering oper-
ations. In addition, it can prove handy when doing toon rendering to create an outline
around your objects. The following pixel shader implements a basic edge detection algo-
rithm based on the Sobel filter:

const float off = 1.0 / 256.0;
float4 ps_main( float2 TexCoord : TEXCOORD0 ) : COLOR
{

// Sample the neighbor pixels
float s00 = tex2D(RT, TexCoord + float2(-off, -off));
float s01 = tex2D(RT, TexCoord + float2( 0,   -off));
float s02 = tex2D(RT, TexCoord + float2( off, -off));

float s10 = tex2D(RT, TexCoord + float2(-off,  0));
float s12 = tex2D(RT, TexCoord + float2( off,  0));

float s20 = tex2D(RT, TexCoord + float2(-off,  off));
float s21 = tex2D(RT, TexCoord + float2( 0,    off));
float s22 = tex2D(RT, TexCoord + float2( off,  off));

// Sobel filter in X and Y direction
float sobelX = s00 + 2 * s10 + s20 - s02 - 2 * s12 - s22;
float sobelY = s00 + 2 * s01 + s02 - s20 - 2 * s21 - s22;

// Find edge using a threshold of 0.07 which works generally
// well for general edge detection.
float edgeSqr = (sobelX * sobelX + sobelY * sobelY);
return 1.0-(edgeSqr > 0.07 * 0.07);

}
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Lighting
Lighting is one of the most important components of rendering. The following sections
take you through some of the most commonly used pieces of shader code developed
throughout this book.

Diffuse Lighting
When rendering rough surfaces, light gets reflected in every direction. This diffusion leads
to diffuse lighting. The following function, which can be used either per-vertex or per-
pixel, implements diffuse lighting for a simple point light:

float4 Light_PointDiffuse(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation)

{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist +
LightAttenuation.z * Dist * Dist ));

// Compute suface/light angle based attenuation defined as dot(N,L)
// Note : This must be clamped as it may become negative.
float AngleAttn = clamp(0, 1, dot(VertNorm, LightDir) );

// Compute final lighting
return LightColor * DistAttn * AngleAttn;

}

Specular Lighting
Although diffuse lighting deals mostly with rough surfaces, specular lighting deals with
smooth surfaces. Such surfaces reflect light more directly and cause lighting to produce a
more distinct highlight. The following function implements a basic specular lighting
shader for a basic point light:

float4 Light_PointSpecular(float3 VertPos, float3 VertNorm, float3 LightPos,
float4 LightColor, float4 LightAttenuation,
float3 EyeDir)
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{
// Determine the distance from the light to the vertex and the direction
float3 LightDir = LightPos - VertPos;
float  Dist = length(LightDir);
LightDir = LightDir / Dist;

// Compute half vector
float3 HalfVect = normalize(LightDir-EyeDir);

// Compute distance based attenuation. This is defined as:
// Attenuation = 1 / ( LA.x + LA.y*Dist + LA.z*Dist*Dist )
float DistAttn = clamp(0,1, 1 / ( LightAttenuation.x +

LightAttenuation.y * Dist +
LightAttenuation.z * Dist * Dist ));

// Compute suface/light angle based attenuation defined as dot(N,L)
// Note : This must be clamped as it may become negative.
float SpecularAttn =  pow( clamp(0, 1,dot(VertNorm, HalfVect)),32);

// Compute final lighting
return LightColor * DistAttn * SpecularAttn;

}

Tangent Space Lighting
Before you can do any complex form of per-pixel lighting, such as bumpmapping, you
will need to define your lighting information in tangent space so that the pixel shader can
deal with a uniform coordinate system. The following vertex shader code illustrates a basic
implementation of how you can determine the tangent space for a simple light:

VS_OUTPUT vs_main(float4 inPos: POSITION, float3 inNormal: NORMAL,
float3 inTangent:TANGENT, float3 inBinormal:BINORMAL,
float2 inTxr: TEXCOORD0)

{
VS_OUTPUT Out;

// Compute the projected position and send out the texture coordinates
Out.Pos = mul(view_proj_matrix, inPos);
Out.TexCoord = inTxr;

// Determine the distance from the light to the vertex and the direction
float4 LightDir;

Appendix E   ■ Shader Library458

TEAM LinG - Live, Informative, Non-cost and Genuine !



LightDir.xyz = mul(inv_view_matrix,LightPosition) - inPos;
float  Dist = length(LightDir.xyz);
LightDir.xyz = LightDir.xyz / Dist;

// Compute the per-vertex distance based attenuation
LightDir.w = clamp(0,1, 1 / ( Light1_Attenuation.x +

Light1_Attenuation.y * Dist +
Light1_Attenuation.z * Dist * Dist ));

// Determine the eye vector
float3 EyeVector = normalize(view_position-inPos);

// Transform to tangent space and output
// half vector and light direction
float3x3 TangentSpace;
TangentSpace[0] = inTangent;
TangentSpace[1] = inBinormal;
TangentSpace[2] = inNormal;
Out.HalfVect = mul(TangentSpace,normalize(LightDir.xyz+EyeVector));
Out.LightDir = float4(mul(TangentSpace,LightDir.xyz),LightDir.w);

return Out;
}

Per-Pixel Bumpmapping
Most objects, even those with high density meshes, can lack detail. The use of bumpmaps
can significantly improve rendering quality by adding surface details at the pixel level. The
following pixel shader code implements a basic per-pixel bumpmapping shader:

float4 Light_Point(float3 Normal, float3 HalfVect, float4 LightDir,
float4 LightColor)

{
// Compute both specular and diffuse factors
float SpecularAttn =  pow( clamp(0, 1,dot(Normal, HalfVect)),16);
float DiffuseAttn =  clamp(0, 1,dot(Normal, LightDir));

// Compute final lighting
return LightColor * LightDir.w * (SpecularAttn+DiffuseAttn);

}
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float4 ps_main(float2 inTxr:TEXCOORD0,float4 LightDir:TEXCOORD1,
float3 HalfVect:TEXCOORD2) : COLOR

{
// Read bump and influence the normal
float3 normal = tex2D(Bump,inTxr) * 2 - 1;

// Simply route the vertex color to the output
return tex2D(Texture0,inTxr)*

(Light_Ambient+Light_Point(normal,HalfVect,LightDir,Light1_Color));
}

Polynomial Texture Mapping
In the search for new lighting techniques, polynomial texture mapping has proven to be
an interesting new candidate as a replacement for regular bumpmapping. By taking an
existing material and sampling it from several different lighting angles, you can construct
a polynomial representation that can be used to represent not only bumpmapping, but
also some of its side effects, such as self-shadowing. The following pixel shader illustrates
how such a shader can be implemented:

float4 ps_main(
float4 inTex: TEXCOORD0,
float3 inLight:TEXCOORD1 ) : COLOR

{
float3 lu2_lv2_lulv;
float4 col;
float3 a012;
float3 a345;

// Normalize light direction
inLight = normalize(inLight);

// z-extrapolation
if (mode > 0.0f && inLight.z < 0.0)
{

inLight.xy = normalize(inLight.xy);
inLight.xy *= (1.0 - inLight.z);

}
inLight.z = 1.0;

// Prepare higher-order terms
lu2_lv2_lulv = inLight.xyx * inLight.xyy;

// read terms and bias
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a012 = tex2D(Poly1,inTex) * 2.0 - 1.0;
a345 = tex2D(Poly2,inTex) * 2.0 - 1.0;
a345.z += 1.0;

// Evaluate polynomial
col = dot(lu2_lv2_lulv, a012) + dot(inLight, a345);

// Multiply by rgb factor
return col * tex2D(color_map, inTex);

}

Spherical Harmonics
For a single point in the scene, you can form a representation of all the incoming light at
this point. By only considering diffuse lighting, you can simplify the representation with
spherical harmonics. This enables you to represent this lighting in a form that is as small
as a single matrix per color component. The following shader implements a simple per-
vertex spherical harmonics shader:

VS_OUTPUT vs_main(
float4 inPosition: POSITION,
float4 inNormal:   NORMAL,
float4 inTex:      TEXCOORD )

{
VS_OUTPUT Out;

// Transform the position and output the texture coordinate
Out.Pos = mul( view_proj_matrix, inPosition);
Out.Tex = inTex;

// Rotate normal into view space since the lighting information
// is in that space
float4 normal = float4(inNormal.x, inNormal.y, inNormal.z, 0.0);
normal = mul(view_matrix, normal);
normal.w = 1.0;

// Evaluate spherical harmonic
Out.Diff.r = dot(mul(r_matrix, normal), normal);
Out.Diff.g = dot(mul(g_matrix, normal), normal);
Out.Diff.b = dot(mul(b_matrix, normal), normal);
Out.Diff.a = 1.0;

return Out;
}
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Reflection and Refraction
Reflections and refractions are important components in trying to make a scene livelier.
Whether you are rendering glass or water, the following techniques will prove useful in
rendering most non-opaque objects.

Reflection
Glossy materials, such as polished metals or glass, will not only produce specular lighting
but will also reflect their environment. The following code illustrates how you can imple-
ment a shader that determines a reflection vector based on the view vector and surface
normal:

// Determine the reflection vector by using the normal and view vectors
Out.Reflect = reflect(inNormal,viewVec);

Refraction
Any transparent materials will not let light pass straight through. The material has the
effect of slightly changing the direction of the light, resulting in an effect called refraction.
Because the HLSL function does not always give accurate results, the following code
implements a refraction shader based on Snell’s Law:

// Compute the reflection vector using Snell’s law
// the refract HLSL function does not always work properly
// n_i * sin(theta_i) = n_r  * sin(theta_r)

// sin(theta_i)
float cosine = dot(viewVec, inNormal);
float sine = sqrt(1 - cosine * cosine);

// sin(theta_r)
float sine2 = saturate(RefractionIndex * sine);
float cosine2 = sqrt(1 - sine2 * sine2);
// Determine the refraction vector be using the normal and tangent
// vectors as basis to determine the refraction direction
float3 x = -inNormal;
float3 y = normalize(cross(cross(viewVec, inNormal), inNormal));
Out.Refract = x * cosine2 + y * sine2;

Materials
Materials help define the surface of an object in more detail than a simple texture can. The
following sections cover topics such as procedural materials and BRDF-based lighting.
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Velvet
Velvet is one of those materials that seem to defy the laws of physics when it comes to
lighting. This is because of its micro-hair structure. The following shader implements a
basic velvet-like shader using Minneart’s lighting equations:

float4 Light_Velvet(float3 Normal, float3 EyeVect, float3 LightDir,
float4 LightColor)

{
// Compute both the light and eye angle about the surface
// normal for the surface
float l = pow( clamp(dot(Normal, LightDir),0,1),

Velvet_Exponent );
float e = pow( clamp(dot(Normal, EyeVect),0,1),

Velvet_Exponent );

// Compute final lighting. Which is defined as the product
// of the cosine of both the light and eye vectors.
return LightColor * clamp(l*e,0,1);

}

Oren-Nayer Lighting
BRDFs can be expensive to represent accurately. By using data such as the database pro-
vided by the Curet group, you can approximate such complex materials through the use
of a simplified lighting model. The Oren-Nayer lighting provides an easy and efficient
means of representing the BRDFs of multiple classes of materials. The following shader
function implements an Oren-Nayer lighting function:

float4 Light_OrenNayer(float3 Normal, float3 EyeVect, float3 LightDir,
float4 LightColor)

{
float3 HalfVect = normalize(LightDir+EyeVect);

// calculate all the dot products
float EdotH = dot(EyeVect, HalfVect);
float LdotH = dot(LightDir, HalfVect);
float NdotH = dot(Normal, HalfVect);
float NdotL = dot(Normal, LightDir);
float NdotE = dot(Normal, EyeVect);

// calculate the zenith angles
float sinTheta_r = length(cross(EyeVect,Normal));
float cosTheta_r = max(NdotE,0.001);
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float sinTheta_i = length(cross(LightDir,Normal));
float cosTheta_i = max(NdotL,0.001);
float tanTheta_i = sinTheta_i / cosTheta_i;
float tanTheta_r = sinTheta_r / cosTheta_r;

// calculate the azimuth angles
float3 E_p = normalize(EyeVect-NdotE*Normal);
float3 L_p = normalize(LightDir-NdotL*Normal);
float cosAzimuth = dot(E_p, L_p);

// Compute final lighting
float inten = rho_pi * cosTheta_i *

(A + B * max(0, cosAzimuth) *
max(sinTheta_r, sinTheta_i) * min(tanTheta_i, tanTheta_r));

return LightColor * clamp(inten,0.0,1);
}

Basic Perlin Noise
Not all materials have a nice predictable pattern. Materials such as clouds or wood exhibit
noisy or turbulent patterns that can be re-created procedurally. The advantage of such
materials is that you can use their noisy nature to create a wide variety of instances that
all look different. At the heart of all these materials lies a noise-generating algorithm, of
which the most common is Perlin noise. The following pixel shader shows a basic four-
octave implementation of Perlin noise:

float4 ps_main(float2 texCoord: TEXCOORD0) : COLOR
{

// Sample only the first slice of the noise texture
float3 txr = float3(texCoord,0);

// Combine 4 octaves of noise together
// Note: that the noise is considered signed but read from
// an unsigned texture so it must be renormalized
float final_noise = 0;
for(int i=0;i<4;i++)

final_noise +=(1.0/pow(persistance,i))*
(tex3D(Texture0, txr*pow(2,i))*2-1);

// Remove the sign from the noise
return (final_noise+1)/2;

}
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Marble and Wood Noise Materials
Using Perlin noise, you can implement several classes of noisy or turbulent materials. The
following two pixel shaders illustrate how noise can be used to re-create both wood and
marble:

// Marble
float4 ps_main(float3 txr: TEXCOORD0) : COLOR
{

// Combine 2 octaves of noise together.
// Two octaves is sufficient for cloud rendering
float final_noise = 0;
for(int i=0;i<2;i++)

final_noise += ((1.0/pow(persistance,i))*
((tex3D(Texture0, txr*pow(2,i))*2)-1));

// Remove the sign from the noise and prep
// it for cloud rendering
return marble_color * 0.2+(1.2*abs(final_noise));

}

// Wood
float4 ps_main(float3 txr: TEXCOORD0) : COLOR
{

// Determine two set of coordinates, one for the noise
// and one for the wood rings
float3 noisetxr = txr;
txr = txr/8;

// Combine 3 octaves of noise together.
float final_noise = 0;
for(int i=0;i<2;i++)

final_noise += ((1.0/pow(persistance,i))*
((tex3D(Texture0, txr*pow(2,i))*2)-1));

// The wood is defined by a set of concentric rings in the XY
// plane. Those rings are pertubated by the computed noise.
final_noise = abs(final_noise);
float grain = cos(dot(noisetxr.xy,noisetxr.xy) + final_noise*4);
return wood_color - pow(grain,8)/2;

}
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3D Studio Max, 14-16

A
abs function, 238

absolute values (Perlin noise), 238

Adobe Web site, 14

algebra, 5

aliasing, box filters, 82

allocating registers, 9

alpha channels

blurring (DOF), 102-107, 113-114, 414-415

HDR, 137-138, 150-151

troubleshooting translucency, 104

ambient light, 157, 168-169, 296

angles, azymuth, 225

animating

heat haze, 126

light, 177, 424-427

materials (Perlin noise), 240-242

objects, 281-283

interpolating, 283-287

keyframes, 283-287

matrices, 287-290

skinning, 287-290

refraction, 132, 419

textures, 64, 407-409

anisotropic materials, 217-222

APIs

DirectX, 30-32

OpenGL, 30-32

overview, 29

architecture

rendering, 7-11, 20-22, 32-34

shaders, 3

area light, 166-167

arrays (box filters), 81

artifacts (lens flare), 89

Artist window (RenderMonkey), 42, 400-401

assembly, programming shaders, 7

ATI Technologies

NormalMapper, 335

RenderMonkey. See RenderMonkey

atmospherics

heat haze

animating, 126

distortion maps, 125-126

fire, 127-131

particle system, 127-131

pavement, 124-126

polygons, 127-131

storing pixels in 3D, 126

theory, 115-117

rendering, 277-278
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attenuation, 164-165

pixel light, 182

axes, rendering, 24

azimuth angles (BRDFs), 225

B
backface culling, 28

background. See cube maps

Bi-Directional Refractance Distribution Functions.
See BRDFs

black and white rendering, 75-77

blending

blurring (DOF), 104

render target passes, 86-87

textures, 64, 409-410

blooming. See glare

blurring

box filters, 80-83, 94

camera nodes, 97

convolution filters, 83-84

depth impostors, 96-100, 113, 412-413

W buffer, 98, 101

Z buffer, 98, 101, 111-112

DOF, 94-96, 112-113, 412

alpha channels, 102-107, 113-114, 414-415

camera nodes, 97

depth impostors, 96-100, 113, 412-413

edges, 113, 412, 415-416

equation, 101

lookup textures, 113, 414-415

smoothing, 114

troubleshooting blending, 104

W buffer, 98, 101

Z buffer, 98, 101, 111-112

edge detection filters, 84

Gauss filters, 88, 94-96, 411-412

light, 292-293

motion

creating, 86-87

loops, 85

RenderMonkey, 85

theory, 84-85

render targets, multiple, 106

box filters

arrays, 81

blurring, 80-83, 94

loops, 81

troubleshooting aliasing, 82

BRDFs (Bi-Directional Refractance Distribution
Functions). See also refraction

azimuth angles, 225

coefficients, 222-223

corduroy, 228, 438-439

equation, 217

felt, 228, 438-439

light, 158, 160-161

lookup textures, 227-228, 437-438

Mineart, 218-222, 227-228, 437-438

equation, 219

Oren-Nayer, 222-227

equation, 222

performance, 227

PTMs, 298-299

skin, 228, 438-439

theory, 217-218

brightness

color, 79

light, 133-134

building. See creating

built-in functions (HLSL), 352-378

bumpmaps

distortion maps comparison, 120

pixel light, 189-191, 197, 429-432

equation, 190

PTMs, 298-299

recovering LOD, 334-335

C
calculating. See equations

cameras. See also viewing

camera-to-object vector equation, 204

cube maps. See cube maps

DOF. See DOF

Index468
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lens flares

artifacts, 89

HDR, 135, 145-148

nodes, depth impostors, 97

objects, viewing, 25-28

camera-to-object vector equation, 204

cartoons

edge detection, 248-250

light, 253-255

multiple objects, 247-248

outlines, 246-252, 259-260, 442-443

overview, 246

shading, 252-255, 260, 444

Sobel filter, 248-250

textures, 252-253

CD-ROM

code, 403

color illustrations, 404

DirectX SDK, 404

NVIDIA Photoshop plug-in, 405

NVIDIA texture library, 404-405

RenderMonkey, 404

Cg toolkit, 17

CIE model equation, 277-278

circles

fog, 279, 444-445

materials (Perlin noise), 239-240

clamp function, 102-104

clipping polygons, 28

clouds. See also fog

Perlin noise, 236-237, 242, 439-440

code

CD-ROM, 403

editing, 41-42

error handling, 40-41

shaders library, 451-465

coefficients

BRDFs, 222-223

spherical harmonics, 303

color. See also textures

black and white, 75-77

brightness, 79

Index 469

contrast, 79

cube maps, 214, 435-436

DOF render targets, 107-108

fog, 266

illustrations (CD-ROM), 404

inverting, 79

light, 156, 158-159

linear, 77-79

negatives, 79

optimizing, 79-80

render targets, 69

sepia, 88, 411

thermal vision, 78-79

values, 75

color registers, 10

commands (RenderMonkey), 382-385

compiling shaders, 58

constant registers, 9, 11

contrast (color), 79

convolution filters, blurring, 83-84

coordinates. See also maps

cube maps, 121

render targets, 71-73

rendering, 24

textures, 59-60, 71-73

corduroy (BRDFs), 228, 438-439

creating. See also rendering

cube maps, 120-123, 199-202

dynamic cube maps, 212-213

effect groups, 51-52

materials (Perlin noise), 230-235

models, 52

motion, blurring, 86-87

shaders, 51-58, 62-63

textures, 58-61

cross products, 5

cube maps

camera positioning, 122

coordinates, 121

creating, 120-123, 199-202

HDR, 137
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cube maps (continued)

light, 292

color, 214, 435-436

dynamic, 212-213

IOR, 206, 214, 435-436

pixels, 213, 433-434

reflection, 203-205, 209-212

refraction, 206-212

performance, 213

refraction, 123

RenderMonkey, 122

support, 121, 212

Web site, 137

Z buffer, 122

custom light, 291

D
data types (HLSL), 344-346

DDS (Direct Draw Surface) files, 13-14

density

fog, 268, 271

refraction, 116

depth, fog, 271-277

depth buffer (render targets), 69

depth impostors

blurring, 96-100, 113, 412-413

W buffer, 98, 101

Z buffer, 98, 101-112

camera nodes, 97

refraction, 118

depth of field. See DOF

design (RenderMonkey), 38

diagonal filters (HDR), 143

dialog boxes. See windows

diffuse light, 157, 169-171, 292-293

pixel light, 181-184

spherical harmonics, 302

Direct3D. See DirectX

directional light, 162-163, 177, 422-424

pixel light, 197, 427-429

DirectX

overview, 30-32

SDK CD-ROM, 404

Discreet Web site, 14

displacement mapping, 336-337

distortion. See heat haze

distortion maps

bumpmaps comparison, 120

heat haze, 125-126

refraction, 118-120, 132, 419

storing pixels in 3D, 126

DOF (depth of field), 90

blurring, 94-96, 112-113, 412

alpha channels, 102-107, 113-114, 414-415

camera nodes, 97

depth impostors, 96-100, 113, 412-413

edges, 113, 412, 415-416

equation, 101

lookup textures, 113, 414-415

smoothing, 114

troubleshooting blending, 104

W buffer, 98, 101

Z buffer, 98, 101, 111-112

color (render targets), 107-108

equation, 92

overview, 93

passes, 109-111

theory, 90-93

dot products, 5, 76-79

dust. See atmospherics; clouds

E
edge detection

blurring, 84

cartoons, 248-250

DOF, 113, 412, 415-416

sharpening, 83-84

editing

code, 41-42

textures, 59

Editor window (RenderMonkey), 41-42

editors. See windows

Effect Editor, 16

effect groups, 51-52

environment maps. See cube maps
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equations

blurring DOF, 101

BRDFs, 217

CIE model, 277-278

DOF, 92, 101

dot product, 76-77

matrix multiplication, 77-79

Mineart, 219

Oren-Nayer, 222

progressive meshes, 333

PTMs, 299

Snell’s Law, 116, 206

specular light, 203

spherical harmonics, 303

textures, bumpmaps, 190

vectors, camera-to-object, 204

error handling, 40-41

explosions (Perlin noise), 242

exponential progression (fog), 267-268

exposure control (HDR), 136-139

expressions (HLSL), 349-350

F
felt (BRDFs), 228, 438-439

files (DDS), 13-14

filters

box

arrays, 81

blurring, 80-83, 94

loops, 81

troubleshooting aliasing, 82

convolution, blurring, 83-84

diagonal (HDR), 143

edge detection

blurring, 84

sharpening, 83-84

Gauss, blurring, 88, 94-96, 411-412

Sobel (cartoons), 248-250

fire

heat haze, 127-131

Perlin noise, 242

refraction, 118

Index 471

flame. See fire

flashlight, 165-166

floating-point textures

HDR, 136

support, 107

fog. See also clouds

circle, 279, 444-445

color, 266

density, 268, 271

depth, 271-277

exponential progression, 267-268

hardware, 265-277

height, 269-270

light, 271

linear progression, 267-268

particles, 264

pixel shaders, 265

positioning, 271

radial, 266

shape, 271

theory, 263-265

values, 268

vertex shaders, 265

video cards, 265-277

volume, 271-277

fractals. See Perlin noise

frequency (spherical harmonics), 302

functions (HLSL), 349

abs, 238

built-in, 352-378

clamp, 102-104

intrinsic, 352-378

lerp, 87

Normalize, 181, 286

refract, 116

round, 108

Text2D, 61

textCUBE, 121-123

user-defined, 351-352
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G
G Max, 14-16

gasses. See fire

Gaussian

filters, blurring, 88, 94-96, 411-412

materials (Perlin noise), 230

geometry. See LOD

ghosts. See lens flares

glare (HDR), 134-135, 139-142, 150-152, 420-421

glass, reflection, 203

graphics. See rendering

grayscale rendering, 75-77

GUI. See RenderMonkey

H
hardware

architecture, 32-34

fog, 265-277

HDR, 150-151

requirements, 5-6

shader versions, 338-340

hatching, 256-259

HDR (high dynamic range), 133

alpha channels, 137-138, 150-151

cube maps, 137

exposure control, 136-139

floating point textures, 136

hardware, 150-151

light, 133-134, 148-149

diagonal filters, 143

glare, 134-135, 139-142, 150-152, 420-421

leaking, 139

lens flares, 135, 145-148

streaking, 135, 143-145, 152, 421-422

support, 150-151

heat haze

animating, 126

distortion maps, 125-126

fire, 127-131

particle system, 127-131

pavement, 124-126

polygons, 127-131

storing pixels in 3D, 126

theory, 115-117

heat vision, 78-79

height, fog, 269-270

hemispheric light, 294-296

high dynamic range. See HDR

High-Level Shader Language. See HLSL

high-resolution illustrations (CD-ROM), 404

history, shaders, 3-5, 34-35

HLSL (High-Level Shader Language), 343

data types, 344-346

expressions, 349-350

functions, 349

abs, 238

built-in, 352-378

clamp, 102-104

intrinsic, 352-378

lerp, 87

Normalize, 181, 286

refract, 116

round, 108

Text2D, 61

textCUBE, 121-123

user-defined, 351-352

overview, 343

shaders library, 451-465

statements, 349

typecasts, 347-348

variables, 348-349

I
illustrations (CD-ROM), 404

index of refraction (IOR), 206, 214, 435-436

infrared vision, 78-79

input registers, 9-10

installing RenderMonkey, 380-381

intensity (light), 133-134

interpolating

animating objects, 283-287

materials (Perlin noise), 231

polygons, vertices, 9

values, linear, 87
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intrinsic functions (HLSL), 352-378

inverse matrix, 25-26

inverting color, 79

IOR (index of refraction), 206, 214, 435-436

isotropic materials, 217-222

iterating. See loops; passes

J-K
jet exhaust. See fire

keyframes, animating objects, 283-287

L
landscape (displacement mapping), 336-337

leaking (HDR), 139

lens flare

artifacts, 89

HDR, 135, 145-148

lerp function, 87

level of detail. See LOD

libraries

shaders, 451-465

textures (CD-ROM), 404-405

light

ambient, 157, 168-169, 296

animating, 177, 424-427

area, 166-167

attenuation, 164-165, 182

blurring, 292-293

BRDFs. See BRDFs

brightness, 133-134

cartoons, 253-255

color, 156, 158-159

cube maps, 214, 435-436

cube maps, 292

color, 214, 435-436

dynamic, 212-213

HDR, 137

IOR, 206, 214, 435-436

pixels, 213, 433-434

reflection, 203-205, 209-212

refraction, 206-212

custom, 291

Index 473

diffuse, 157, 169-171, 292-293

pixel, 181-184

directional, 162-163, 177, 422-424

pixel, 197, 427-429

DOF. See DOF

flashlight, 165-166

fog. See fog

HDR, 133-134, 148-149

alpha channels, 137-138, 150-151

cube maps, 137

diagonal filters, 143

exposure control, 136-139

floating point textures, 136

glare, 134-135, 139-142, 150-152, 420-421

hardware, 150-151

leaking, 139

lens flare, 135, 145-148

streaking, 135, 143-145, 152, 421-422

support, 150-151

heat haze. See heat haze

hemispheric, 294-296

intensity, 133-134

light bulbs, 164-167

materials, 293-294

microfacets, 293-294

multiple, pixel, 197, 429-432

outdoor, 292-296

particles, 156

pixel

attenuation, 182

bumpmaps, 189-191, 197, 429-432

cube maps, 213, 433-434

diffuse, 181-184

directional, 197, 427-429

multiple, 197, 429-432

normal maps, 189, 193-196

overview, 180-181

shaders, 187-188

specular, 184-186

tangent space, 191-196

point, 164-165
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light (continued)

PTMs, 297-301

BRDFs, 298-299

bumpmaps, 298-299

equation, 299

microfacets, 299

reflection

cube maps, 203-205, 209-212

glass, 203

mirror, 203

water, 203

refraction, 158-159

cube maps, 206-212

IOR, 206, 214, 435-436

self-occlusion, 296

shaders, 174-176

shadows

mapping, 112, 312-320

multiple, 323-325

overview, 309

soft, 325, 448-450

theory, 310-312

volume, 320-323

Snell’s Law equation, 206

specular, 157, 171-174, 292-293

equation, 203

pixel, 184-186

spherical harmonics, 301-306

coefficients, 303

diffuse, 302

equation, 303

frequency, 302

pixels, 306, 445-448

spot, 165-166

sub-surface scattering, 159-160

sunlight, 162-163

surfaces, 156-158

textures, 156-158

theory, 155-161

torch, 164-165

vectors, 171-172

vertex limitations, 179-180

waves, 156

light bulbs, 164-167

linear color, 77-79

linear interpolation values, 87

linear progression (fog), 267-268

LOD (level of detail), 327

equations, 333

overview, 327-328

performance, 327-328, 330

progressive, 331-334

recovering (bumpmaps), 334-335

static, 328-331

Web site, 333

lookup textures, 79-80

blurring (DOF), 113, 414-415

BRDFs, 227-228, 437-438

materials (Perlin noise), 241

loops

box filters, 81

materials (Perlin noise), 235

motion blurring, 85

M
maps. See also coordinates

bumpmaps

distortion maps comparison, 120

equation, 190

pixel light, 189-191, 197, 429-432

PTMs, 29-299

recovering LOD, 334-335

displacement, 336-337

distortion maps

bumpmaps comparison, 120

heat haze, 125-126

refraction, 118-120, 132, 419

storing pixels in 3D, 126

parabolic maps, 120

PTMs, 297

BRDFs, 298-299

bumpmaps, 298-299
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equation, 299

light, 297-301

microfacets, 299

shadows, 112, 312-320

sphere maps, 120

marble (Perlin noise), 237-240

masking pixel shaders, 11

materials. See also textures

anisotropic, 217-222

BRDFs

azimuth angles, 225

coefficients, 222-223

corduroy, 228, 438-439

equation, 217

felt, 228, 438-439

lookup textures, 227-228, 437-438

Mineart, 218-222, 227-228, 437-438

Oren-Nayer, 222-227

performance, 227

skin, 228, 438-439

theory, 217-218

equations

Mineart, 219

Oren-Nayer, 222

isotropic, 217-222

light, 156-158, 293-294

scattering, 159-160

Perlin noise

absolute values, 238

animating, 240-242

circles, 239-240

clouds, 236-237, 242, 439-440

creating, 230-235

explosions, 242

fire, 242

Gaussian, 230

interpolating, 231

lookup textures, 241

loops, 235

marble, 237-240

overview, 229

Index 475

performance, 232

persistence, 233-234

rock, 242-243, 441

seamless tiling, 233

smoothness, 231, 241-242

strata, 242-243, 441

wood, 237-240

random, 229

velvet, theory, 215-216

math. See equations

matrices

animating objects, 287-290

axes, 24

coordinates, 24

multiplying, 24-25

equations, 77-79

operations, 5

rotation, 24-25

scale, 23-24

translation, 23

Melody tool, 335

menu commands (RenderMonkey), 382-385

meshes

progressive, 331-334

equations, 333

Web site, 333

rendering, 7-8, 20-22

microfacets

light, 293-294

PTMs, 299

Microsoft

Effect Editor, 16

Texture Tool, 13-14

Mineart

BRDFs, 218-222, 227-228, 437-438

equation, 219

mip maps, 69

mirror

reflection, 203

refraction, 132, 417-418
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models, 52-54

modulating textures, 64, 409-410

modules. See windows

Moore’s Law, 4

motion, blurring

creating, 86-87

loops, 85

RenderMonkey, 85

theory, 84-85

moving. See animating

multiple

objects, cartoons, 247-248

pixel light, 197, 429-432

render targets, blurring, 106

shaders, creating, 62-63

shadows, 323-325

multiplying matrices, 24-25, 77-79

N
naming

effect groups, 52

models, 52

textures, 58

navigating windows, 41

negatives (color), 79

nodes

camera (DOF), 97

shaders, 44-50

non-photorealistic (NPR) rendering, 245

normal maps (pixel light), 189, 193-196

Normalize function, 181, 286

NormalMapper, 335

NPR (non-photorealistic) rendering, 245

NVIDIA

Cg toolkit, 17

Melody tool, 335

Photoshop

overview, 14-15

plug-in (CD-ROM), 405

texture library, 404-405

Web site, 17

O
objects. See also polygons

animating, 281-283

interpolating, 283-287

keyframes, 283-287

matrices, 287-290

skinning, 287-290

multiple, cartoons, 247-248

rendering, 21-22, 28-29

viewing, cameras, 25-28

occlusion

light, 296

polygons, viewing, 9-10

offsetting

refraction, 118-120

render targets, 71-73

OpenGL, 30-32

opening

models, 52

shaders, 44

operations, math, 5

optimizing color, 79-80

Oren-Nayer

BRDFs, 222-227

equation, 222

outdoor light, 292-296

outlines (cartoons)

edge detection, 248-250

multiple objects, 247-248

rendering, 246-252, 259-260, 442-443

Sobel filter, 248-250

output registers, 9-11

Output window (RenderMonkey), 40-41, 396, 398

P
panorama. See cube maps

parabolic maps, 120

particles

fog, 264

heat haze, 127-131

light, 156
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passes

DOF, 109-111

render targets, 69-70

blending, 86-87

rendering, 54-55

pavement (heat haze), 124-126

performance

BRDFs, 227

cube maps, 213

floating point textures, 107

LOD, 327-328, 330

materials (Perlin noise), 232

shaders, versions, 57

Perlin noise

absolute values, 238

animating, 240-242

circles, 239-240

clouds, 236-237, 242, 439-440

creating, 230-235

explosions, 242

fire, 242

Gaussian, 230

interpolating, 231

lookup textures, 241

loops, 235

marble, 237-240

overview, 229

performance, 232

persistence, 233-234

rock, 242-243, 441

seamless tiling, 233

smoothness, 231, 241-242

strata, 242-243, 441

wood, 237-240

persistence (Perlin noise), 233-234

Photoshop

overview, 14-15

plug-in (CD-ROM), 405

pipeline

pixel shaders, 6-11

vertex shaders, 6-11

Index 477

pixel light

attenuation, 182

bumpmaps, 189-191, 197, 429-432

equation, 190

diffuse, 181-184

directional, 197, 427-429

multiple, 197, 429-432

normal maps, 189, 193-196

overview, 180-181

shaders, 187-188

specular, 184-186

tangent space, 191-196

pixel shaders

fog, 265

masking, 11

overview, 6-11, 56-57

pipeline, 6-11

registers, 11

swizzling, 11

version 1.0, 3-4

version 2.0, 6-7

version 3.0, 11

pixels

cube maps, 213, 433-434

spherical harmonics, 306, 445-448

storing, 3D, 126

point light, 164-165

polygons. See also objects

heat haze, 127-131

rendering, 7-8, 20-22

backface culling, 28

clipping, 28

overview, 28-29

rasterizing, 9, 29

winding order, 28

Z-buffer, 29

vertices, interpolating, 9

viewing, occlusion, 9-10

polynomial texture maps. See PTMs

positioning

camera (cube maps), 122

fog, 271

shaders, 62
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Preview window (RenderMonkey), 40-41, 395-396,
398

programming shaders, assembly, 7

programs

3D APIs

DirectX, 30-32

OpenGL, 30-32

overview, 29

RenderMonkey. See RenderMonkey

progressive LOD, 331-334

equations, 333

Web site, 333

projection matrix

rendering, 26-28

variable, 54-56

PTMs (polynomial texture maps), 297

BRDFs, 298-299

bumpmaps, 298-299

equation, 299

light, 297-301

microfacets, 299

Q-R
radial fog, 266

rasterizing

polygons, 9, 29

shaders, 6

recovering LOD, 334-335

reference rasterizer, 6

references, 54

reflection

cube maps, 203-205, 209-212

glass, 203

mirror, 132, 203, 417-418

water, 203

refract function, 116

refraction. See also BRDFs

animating, 132, 419

cube maps, 123

density, 116

depth impostors, 118

distortion maps, 118-120, 132, 419

fire, 118

heat haze

animating, 126

distortion maps, 125-126

fire, 127-131

particle system, 127-131

pavement, 124-126

polygons, 127-131

storing pixels in 3D, 126

theory, 115-117

light, 158-159

cube maps, 206-212

IOR, 206, 214, 435-436

offsets, 118-120

reflection (mirror), 132, 417-418

render targets, 118-120

theory, 115-117

water, 116-119

registers, 9-11

Render Target window, 68-70

render targets

blurring multiple, 106

color, 69, 107-108

DOF, 107-108

depth buffer, 69

mipmaps, 69

offsetting, 71-73

passes, 69-70

blending, 86-87

refraction, 118-120

rendering, 67-70, 74

scaling, 68

support, 106

textures, 69

coordinates, 71-73

rendering. See also creating

allocating registers, 9

architecture, 7-11, 20-22

atmospherics, 277-278

axes, 24

black and white, 75-77
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cartoons

edge detection, 248-250

light, 253-255

multiple objects, 247

outlines, 246-252, 259-260, 442-443

overview, 246

shading, 252-255, 260, 444

Sobel filter, 248-250

textures, 252-253

color

brightness, 79

contrast, 79

inverting, 79

linear, 77-79

negatives, 79

optimizing, 79-80

thermal vision, 78-79

color registers, 10

constant registers, 9, 11

coordinates, 24

hardware architecture, 32-34

input registers, 9-10

inverse matrix, 25-26

LOD

equations, 333

overview, 327-328

performance, 327-328, 330

progressive, 331-334

recovering (bumpmaps), 334-335

static, 328-331

Web site, 333

meshes, 7-8, 20-22

NPR, 245

objects, 21-22, 28-29

output registers, 9, 11

passes, 54-55

polygons, 7-8, 20-22

backface culling, 28

clipping, 28

overview, 28-29

rasterizing, 9, 29

winding order, 28
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Z-buffer, 29

projection matrix, 26-28

render targets. See render targets

rotation matrix, 24-25

scale matrix, 23-24

sepia, 88, 411

sky, 277-278

temporary registers, 9-11

texture registers, 10

textures, hatching, 256-259

transform matrix, 25-28

transformation matrix, 24-25

translation matrix, 23

troubleshooting, 57

troubleshooting glitches, 95

vertex data registers, 9

vertices, 7-8

volumetric, 20

RenderMonkey

CD-ROM, 404

cube maps, 122

design, 38

installing, 380-381

menu commands, 382-385

modules. See windows

motion blurring, 85

overview, 4-5, 12, 37-38, 379-380

render targets support, 106

shaders

nodes, 44-50

opening, 44

viewing, 44

starting, 42-43

support, 106, 401

toolbar, 381-382

upgrading, 380

windows, 38-42

Artist, 42, 400-401

Editor, 41-42

navigating, 41

Output, 40-41, 396, 398

Preview, 40-41, 395-396, 398
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RenderMonkey (continued)

Render Target, 68-70

shader editors, 60-61, 397-399

Stream Mapping, 397

variable editors, 58, 63, 399-400

Workspace, 38-39, 42, 385-395

requirements, system, 5-6

rock (Perlin noise), 242-243, 441

rotation matrix, 24-25

round function, 108

S
sampler variables (textures), 60-61

scale matrix, 23-24

scaling render targets, 68

scattering light, 159-160

SDK, DirectX, 404

seamless tiling (Perlin noise), 233

self-occlusion (light), 296

sepia, 88, 411

shaders

architecture, 3

compiling, 58

creating, 51-58, 62-63

editors, 60-61, 397-399

effect groups

creating, 51-52

naming, 52

history, 3-5, 34-35

library, 451-465

light, 174-176

models

creating, 52

naming, 52

opening, 52

references, 54

stream mapping, 52-53

nodes, 44-50

opening, 44

overview, 42-50

performance, 57

pixel light, 187-188

pixel shaders

fog, 265

masking, 11

overview, 6-11, 56-57

pipeline, 6-11

registers, 11

swizzling, 11

version 1.0, 3-4

version 2.0, 6-7

version 3.0, 11

positioning, 62

programming, assembly, 7

reference rasterizer, 6

render targets. See render targets

rendering

passes, 54-55

render targets, 67-70

temporary textures. See render targets

textures

animating, 64, 407-409

blending, 64, 409-410

coordinates, 59-60

creating, 58-61

editing, 59

modulating, 64, 409-410

naming, 58

sampler variables, 60-61

variables (view projection matrix), 54-56

versions, 57, 338-340

vertex shaders

fog, 265

light limitations, 179-180

overview, 6-11, 55-56

pipeline, 6-11

values (temporary registers), 11

version 1.0, 3-4

version 2.0, 6-7

version 3.0, 11

video cards, 6

viewing, 40-41, 44

shading cartoons, 252-255, 260, 444
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shadows

mapping, 112, 312-320

multiple, 323-325

overview, 309

soft, 325, 448-450

theory, 310-312

volume, 320-323

shape, fog, 271

sharpening (edge detection filters), 83-84

shimmer. See heat haze

Siggraph Web site, 278

skin (BRDFs), 228, 438-439

skinning (animating objects), 287-290

sky, 277-278

smoke. See atmospherics; clouds

smoothing

blurring (DOF), 114

materials (Perlin noise), 231, 241-242

Snell’s Law, 116, 206

Sobel filter, 248-250

soft shadows, 325, 448-450

software requirements, 5-6

source code. See code

specular light, 157, 171-174, 292-293

equation, 203

pixel light, 184-186

sphere maps, 120

spherical harmonics, 301-306

coefficients, 303

diffuse, 302

equation, 303

frequency, 302

pixels, 306, 445-448

spot light, 165-166

starting (RenderMonkey), 42-43

statements (HLSL), 349

static LOD, 328-331

storing pixels (3D), 126

strata (Perlin noise), 242-243, 441

streaking (HDR), 135, 143-145, 152, 421-422

stream mapping models, 52-53

Stream Mapping window (RenderMonkey), 397

Index 481

sub-surface scattering, 159-160

sunlight, 162-163

support

cube maps, 121, 212

floating point textures, 107

HDR, 150-151

render targets, 106

RenderMonkey, 401

surfaces. See materials

swizzling (pixel shaders), 11

system requirements, 5-6

T
tangent space (pixel light), 191-196

temporary registers, 9-11

temporary textures. See render targets

terrain (displacement mapping), 336-337

Text2D function, 61

textCUBE function, 121-123

texture maps. See PTMs

texture registers, 10

Texture Tool, 13-14

textures. See also color; materials

animating, 64, 407-409

blending, 64, 409-410

bumpmaps, 189-191, 197, 429-432

equation, 190

cartoons, 252-253

coordinates, 59-60, 71-73

creating, 58-61

cube maps. See cube maps

editing, 59

floating point

HDR, 136

support, 107

hatching, 256-259

library (CD-ROM), 404-405

light, 156-158

lookup, 79-80

modulating, 64, 409-410

naming, 58

normal maps, 189, 193-196
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textures (continued)

render targets, 69, 71-73

sampler variables, 60-61

tangent space, 191-196

temporary. See render targets

theory

BRDFs, 217-218

DOF, 90-93

fog, 263-265

heat haze, 115-117

light, 155-161

shadows, 310-312

motion blurring, 84-85

refraction, 115-117

velvet, 215-216

thermal vision, 78-79

tiling seamlessly, 233

toolbar (RenderMonkey), 381-382

toons. See cartoons

torch light, 164-165

transform matrix, 25-28

transformation matrix, 24-25

translation matrix, 23

translucency (alpha channels), 104

triangles. See polygons

troubleshooting

aliasing (box filters), 82

alpha channels, 104

blurring (DOF), 104

recovering LOD, 334-335

rendering, 57, 95

typecasts (HLSL), 347-348

U
upgrading RenderMonkey, 380

user-defined functions (HLSL), 351-352

V
values

absolute, 238

color, 75

fog, 268

linear, interpolating, 87

vertex shaders, temporary registers, 11

variables

editors (RenderMonkey), 58, 63, 399-400

HLSL, 348-349

sampler (textures), 60-61

view projection matrix, 54-56

vector operations, 5

vectors

camera-to-object equation, 204

light, 171-172

velvet

BRDFs

azimuth angles, 225

coefficient, 222-223

Mineart, 218-222, 227-228, 437-438

Oren-Nayer, 222-227

theory, 215-216

versions, shaders, 57, 338-340

vertex data registers, 9

vertex shaders

fog, 265

light limitations, 179-180

overview, 6-11, 55-56

pipeline, 6-11

values (temporary registers), 11

version 1.0, 3-4

version 2.0, 6-7

version 3.0, 11

vertices, 7-9

video cards

fog, 265-277

shaders, 6

view projection matrix variable, 54-56

viewing. See also cameras

cameras, 25-28

polygon occlusion, 9-10

shaders, 40-41, 44

vision, thermal, 78-79
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volume

fog, 271-277

rendering, 20

shadows, 320-323

W
W buffer, blurring DOF, 98, 101

water. See also atmospherics; clouds

light reflection, 203

refraction, 116, 118-119

waves, light, 156

Web sites

Adobe, 14

cube maps, 137

Discreet, 14

NVIDIA, 17

progressive meshes, 333

Siggraph, 278

winding order (polygons), 28
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windows (RenderMonkey), 38-42

Artist, 42, 400-401

Editor, 41-42

navigating, 41

Output, 40-41, 396, 398

Preview, 40-41, 395-396, 398

Render Target, 68-70

shader editors, 60-61, 397-399

Stream Mapping, 397

variable editors, 58, 63, 399-400

Workspace, 38-39, 42, 385-395

wood (Perlin noise), 237-240

Workspace window (RenderMonkey), 38-39, 42,
385-395

X-Z
Z buffer

blurring (DOF), 98, 101, 111-112

cube maps, 122

polygons, 29
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Take Your
Game to the

XTREME!

Xtreme Games LLC was founded to help small game developers
around the world create and publish their games on the commercial
market. Xtreme Games helps younger developers break into the field
of game programming by insulating them from complex legal and
business issues. Xtreme Games has hundreds of developers around
the world. If you’re interested in becoming one of them, then visit us
at www.xgames3d.com.

www.xgames3d.com
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Professional ■ Trade ■ Reference

GOT GAME?

COMING SPRING 2004!

Call 1.800.354.9706 to order
Order online at www.courseptr.comA division of Course Technology

™

3D Game Programming
All in One

1-59200-136-X ■ $49.99

Beginning OpenGL 
Game Programming

1-59200-369-9 ■ $29.99

The Dark Side 
of Game Texturing

1-59200-350-8 ■ $39.99

3D Game Engine
Programming

1-59200-351-6 ■ $59.99

J2ME
Game Programming 

1-59200-118-1 ■ $59.99
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License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright hold-
er(s). You may transfer the enclosed disc only together with this license, and only if you
destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Course PTR to be free of physical defects in materials
and workmanship for a period of sixty (60) days from end user’s purchase of the book/disc
combination. During the sixty-day term of the limited warranty, Course PTR will provide a
replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL
COURSE PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERIS-
TICS OF THE HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION
WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES THAT MAY ARISE, EVEN IF COURSE PTR AND/OR THE AUTHOR HAS
PREVIOUSLY BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
COURSE PTR AND THE AUTHOR SPECIFICALLY DISCLAIM ANY AND ALL OTHER
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MER-
CHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM
FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WAR-
RANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE
LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Course PTR regarding use of the software.
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